

 [image:]

 版权信息

 COPYRIGHT INFORMATION

 书名：Unity3D实战核心技术详解

 作者：姜雪伟

 排版：Clementine

 出版社：电子工业出版社

 出版时间：2017-01-01

 ISBN：9787121304323

 — · 版权所有 侵权必究 · —

 内容简介

 《Unity 3D实战核心技术详解》详细介绍了实际游戏开发中使用的核心技术，每一章都结合了游戏开发的实战案例。首先，介绍了3D数学在Unity中的运用，3D数学知识包括：Unity坐标系统、向量、矩阵、四元数、欧拉角等基础知识。其次，介绍了游戏开发中常用的核心技术：Avatar换装系统、消息事件系统、Protobuf在游戏中的运用，以及游戏中的文本文件加密算法等。再次，介绍了游戏中的AI行为树算法、残影算法、移动端实时阴影绘制、移动端海水的绘制等技术。然后，在游戏架构设计方面，介绍了最经典的针对UI的MVC架构设计和对于角色动作和技能的FSM有限状态机架构，以及游戏版本迭代使用的热更新技术方案。最后，介绍了移动端GPU编程和游戏开发的一些经验。

 《Unity 3D实战核心技术详解》适合具备一定Unity开发经验的初学者和有一定Unity项目开发经验的游戏开发者阅读。

 推荐序

 Unity跨平台引擎这几年在国内的发展势头非常迅猛，截至目前已经横跨27个主流游戏平台，尤其是在手游开发领域发展势头尤为凸显。大量的中小型公司几乎都使用Unity开发游戏。所以在App Store和Android Market上有大量用Unity开发的优质游戏或应用。开发者青睐Unity主要有两个方面原因，一方面是Unity很方便就能跨平台，另一方面是Unity上手快，但是在我看来它受欢迎最主要的原因是上手快。

 跨平台。Unity能一键发布在27个平台上，但是每个平台的特性是不同的，甚至可以说完全不一样。比如代码层面，接入移动SDK，不是所有厂商都能提供Unity的SDK接口。一些平台特定的API，Unity可能没有提供，或者说还没来得及提供，在这些复杂情况下我们只能通过原生方法去调用它。此外，硬件层面内存CPU性能的不同，操作层面触屏、手柄、PC实体按键也都不同，游戏玩法从设计上不可能都一样，所以真正的跨平台并不是随随便便打个包就能完事的。

 上手快。Unity 底层全部使用 C/C++与 OpenGL ES 3D 渲染引擎交互，C#端封装了UnityEditor.DLL和UnityEngine.DLL，通过与Unity内部C/C++代码交互从而与底层代码相互调用。从开发层面看，开发者不用考虑怎么实现复杂的图形学、3D数学算法，甚至完全不懂OpenGL ES 的同学也能用 Unity 开发游戏。因为一切复杂的东西 Unity 在底层都封装好了，开发者只需要编写C#代码访问Unity提供的UnityEditor.DLL及其提供的API接口即可从容地开发3D游戏。听起来是不是很酷炫呢？可是Unity依然存在很多隐患。

 目前看来Unity确实很强大，能做的东西确实很多。但是它却有点“臃肿”了。做过Unity手游开发的人应该都知道，Unity的效率并不高。在UI层面，无论是NGUI，还是UGUI，界面元素稍微多一点打开界面的时候就会出现卡顿。在3D层面，同屏人数多一点或者Shader复杂一些，帧率马上就掉下去了。Unity引擎“大而全”，它为了各个平台的兼容性，性能问题必然会显现出来，因为没办法对某个游戏平台做针对性的优化，加上Unity没有开放源码，开发者更多时候只能靠“猜”，所以有些更大的公司会使用自研引擎。

 关于热更新，我觉得它更多是用来修正游戏Bug的。如果没有热更新，修改一个Bug后需要重新提交App Store评审，这样来来回回可能要耽误好几天时间，不是很合理。由于苹果禁止了JIT，Unity官方没有提供热更新的方案，因此我们都采用Lua进行热更新的开发。虽然Lua的解释器可以用C++代码解释，但是在处理Lua与C#之间穿透的时候依然会很慢，程序设计不合理就会产生性能问题。

 所以Unity最大的痛点就是性能问题，它上手确实很快，但是想学好却是一件很难的事情。脚本开发非常地灵活，但是太灵活就可能会被滥用。现在的互联网上已经充满了各式各样的Unity教程，但是大多数都比较零散，我们太需要一本从实战项目总结出来的好书。姜雪伟的这本新书，从数学以及Shader层面出发，通过实战项目经验的分享以及框架层面的剖析为大家揭露开发的机密，不可不读。

 宣雨松MOMO

 资深Unity 3D开发者

 推荐语

 Unity 3D游戏引擎在如火如荼的AR、VR技术方向下正在大放异彩。Google的Daydream引导的新一波移动VR浪潮，将会使广大Unity 3D手游程序员继续在VR移动大势中弄潮。如果你对手游感兴趣，如果你不想错过AR、VR乃至MR技术浪潮，那么姜雪伟的这本《Unity 3D实战核心技术详解》，你是不应该错过的。本书不同于以往从hello world开始介绍的Unity图书，而是从3D数学和Unity 3D坐标系说起，继而就Unity 3D的换装技术进行讲解，然后就MVC架构设计、Protobuf、移动端Shader、移动端海水等Unity 3D常备技能一一道来。无论是Unity 3D的新手，还是Unity 3D技术熟手，都能从姜雪伟有底蕴的文字中获得力量。

 ——王文刚

 微软.NET MVP，原创技术博客www.xifarm.com的博主

 爱工作，爱编程，爱分享，是我对姜雪伟的第一印象。姜雪伟在业余时间写了这本书，很不容易，也很实用，这本书里蕴藏着他的心血和他对游戏开发的热爱。这本书由浅入深，从基础3D数学到高级的GPU编程。如果你对游戏开发比较感兴趣，或者正在通往游戏开发的路上，想系统地了解游戏开发和制作均可以阅读本书。从架构的角度看，本书介绍了游戏的UI模块、IO模块、Sound模块、Net模块等。从游戏制作的角度看，本书介绍了UI的制作、角色的加载及使用、场景的制作（地形、树木、水、阴影等）、粒子和物理系统的使用。恭喜买到本书的你可以系统而详细地了解游戏的开发和制作，祝愿姜雪伟的这本书可以大卖！

 ——张泽瑞（小阿哥）

 掌趣科技主程，一个从业8年不忘初心的游戏开发者

 Unity 3D是一个富有生命力的游戏引擎，从最初的支持移动平台、多平台，到现在的支持AR/VR，它一直紧跟着发展的趋势。市场上众多用Unity 3D开发的作品也证实了Unity 3D用于游戏开发是可靠的。那么怎样利用Unity 3D更好地进行开发，怎样充分挖掘Unity 3D的特性，怎样在Unity 3D中做出和其他大作一样的游戏产品，这些才是我们开发者应该关注的。

 姜雪伟这本《Unity 3D实战核心技术详解》正是为了尝试解决上述问题而生的。这本书从Unity 3D乃至3D游戏的一些基本原理着手，让读者在编程时更清楚为什么这么做。同时辅以大量的实例，这些实例能让读者接触到一个真正的商业项目中遇到的一些难题和解决方案。这些经验对于开发者而言才是最宝贵的。

 ——蔡俊鸿

 《Unity 5实战：使用C#和Unity开发多平台游戏》译者，

 广州西姆雷娱乐有限公司Technical Lead，kakashi01.com博主

 当前VR、AR技术得到了普遍关注，成为了当下最热门的技术之一，这使得Unity的使用领域不再局限于游戏开发，在虚拟现实、3D空间展示（如房地产楼盘展示）等领域都有良好的表现，已经面世的Unity游戏充分显示了Unity的延展性。大到数百人进行研发的MMORPG，小到一两个人开发的独立游戏，都可以使用Unity进行开发。

 姜雪伟老师的这本《Unity 3D实战核心技术详解》与目前市面上的同类书籍有很大不同，它不是一些入门的基础知识，而是姜雪伟多年一线开发经验的技术分享，这本书从数学知识出发，剖析架构层面，以实例详细介绍游戏开发实际过程中常见的一些难点和重点，无论是Unity 3D的初学者还是已经入行的开发者，这本书对你们的能力提升都有很大的帮助，实用性很强。

 ——张文（优弧）

 泰课在线产品经理，极客，独立开发者

 前言

 在IT行业中游戏程序员的薪资相对于其他领域来说还是比较高的，这也导致了许许多多的软件开发者转入游戏行业，从事Unity 3D游戏开发。Unity引擎因为具有上手快并且能跨平台开发的优点，被众多开发者所喜爱。虽然游戏研发公司对开发人员的需求越来越大，但是初次踏入游戏行业的开发者由于游戏产品项目经验不足，并不被游戏公司所认可。我在泰课在线教育做讲座时发现，有的学员水平还是不错的，但由于他们在游戏行业的工作经验不足，最终很难被游戏公司录用。如今，政府和公司支持的各种创客空间的兴起，为开发者提供了非常好的硬件条件，极大地促进了IT行业的繁荣发展，特别是游戏和软件开发的发展。

 但是游戏行业也是一种技术浓缩型行业，作为一名从业者，要想在这个行业生存和发展，没有过硬的技术是不行的。可是，多年的从业经历让我见到许许多多的年轻人，他们在公司里只能写一些简单的逻辑，长期被边缘化，随时都有被辞退的危险。究其原因，还是他们缺乏解决实际问题的经验，在公司的产品开发中无法提供价值。在和他们接触的过程中，我发现了一个很严重的问题：这些能力欠佳的年轻人也有强烈的欲望去学习专业知识，但是市场上的Unity书籍讲述的都是一些入门的基础知识，已经远远不能满足手游开发工作的需要，他们急需能够与实际开发相结合并且能够帮助他们解决实际问题的书籍。作为他们的前辈，我也有过相似的经历，花费了很多时间去摸索，我一直在思考如何才能让后来者少走弯路。经过多年的经验积累，我终于奉上了这本呕心沥血之作。本书讲述的所有知识点都是与实际开发密切相关的，很多代码可以直接拿过来运用到项目中，实用性超强！

 本书致力于用最通俗的语言讲述初学者最需要的知识。在写作形式上，本书采用图文并茂的方式，让读者更容易掌握知识，为开发能力的提升提供了巨大的帮助。在技术知识的安排上，本书并没有把核心技术一一讲解，而是选择了一些游戏开发中经常使用的技术。

 本书的编写不同于只写对Unity编辑器的一些基本操作的书籍。本书重点讲解游戏开发中实际运用的技术，分享游戏开发经验，阅读完本书，游戏开发者在技术方面和开发经验方面都会有一个质的提升。本书并不是介绍一个游戏是如何制作的，而是介绍游戏开发中的各个核心技术点。因为对于现在的游戏公司来说，核心技术只掌握在少数几个人手里，其他人很难接触到，他们或者是在已有框架的基础上开发，或者是使用已经封装好的技术模块开发。这样对于开发者技术的提升是非常不利的，也不利于增长实际项目开发经验。本书的宗旨就是把游戏中使用的核心技术无偿奉献给开发者，让开发者在最短的时间内提高自己的技能。

 姜雪伟

 2016年10月

 提示

 登录博文视点官方网站（www.broadview.com.cn）进入本书页面，在“资源文件”栏目中可以免费下载本书的源代码。

 第1章

 3D数学与Unity

 任何游戏开发都离不开数学知识，数学知识在IT领域一直是非常重要的，没有数学知识的支撑，程序就失去了灵魂。所以在IT开发，特别是游戏开发或者VR/AR开发领域，运用数学知识解决问题是程序员必须要掌握的技能之一，并且还要能将它们灵活运用到实际项目中解决实际问题。

 我们就从游戏中最基本的也是应用最广泛的数学知识点：坐标系、向量、矩阵、四元数、欧拉角等讲起，逐一给大家介绍其在手游开发中的运用。在介绍的过程中会结合实际项目案例，帮助读者真正地做到学以致用。本章的知识点并没有先后顺序，可以采用跳跃式阅读，希望读者学过以后可以在游戏开发时尝试着运用所学的知识。

 我在游戏行业从事研发工作十五年了，也算是行业中的一名“老兵”，参与或主导过十多款大型网络游戏产品的开发，月流水最多的游戏产品达到五千万以上。当然我也经历过失败的产品，受到过惨痛的教训，对于成功的产品和失败的产品我们在这里不做过多讨论。言归正传，不论成功的产品还是失败的产品，在项目研发过程中都要运用数学知识来解决产品的玩法问题。尤其对于新人，知道如何把大学里面学的数学知识运用到实际项目开发中尤其重要。当前关于Unity开发的书籍大部分是偏重于编辑器功能介绍的。当然也有书籍介绍数学知识，但是偏重于纯理论的数学知识，相对来说比较枯燥，而且没有与实际的开发结合起来，这样就导致了理论与实际的脱钩。本章在介绍理论的同时也结合实际开发操作，真正做到实践与理论结合。

 Unity引擎是非常成熟的，引擎内部运用了很多数学知识，它对开发者来说是不可见的，而且它已封装好的算法也不是很全面。此外，要使用引擎封装的算法也要明白其实现原理。用Unity引擎开发游戏就是在引擎的上层再封装一层游戏架构，在游戏开发的逻辑中需要根据策划需求重新封装一些数学算法以便于逻辑调用。我在业余时间担任多家教育网站的高级讲师，比如， 51CTO教育在线、CSDN教育在线、泰课教育等，就是想把自己的一些项目经验分享给开发者，让开发者在比较短的时间内能够快速提升自己，这也是本书的写作目的之所在，接下来首先讲一下Unity坐标系。

 1.1　Unity坐标系

 在学习使用Unity时，有个问题值得大家思考一下，Unity使用的是哪种坐标系，左手坐标系还是右手坐标系？在介绍Unity坐标系之前先给大家解释一下3D坐标系。3D坐标系表示的是三维空间，3D坐标系存在三个坐标轴，分别为x轴、y轴、z轴，如图1-1所示。

 [image:]
 图1-1　3D坐标系

 3D坐标系分为左手坐标系和右手坐标系。大家可以想象一下：在计算机屏幕上，有三个轴，一个是x轴，它是由左指向右的；另一个是y轴，它是由下指向上的；剩下的一个是z轴，z轴的指向就决定了3D引擎使用的是左手坐标系还是右手坐标系。z轴指向屏幕里面的是左手坐标系，z轴指向屏幕外面的是右手坐标系。对于3D引擎来说，大部分都使用左手坐标系，以Unity引擎为例，它使用的是左手坐标系。明白了坐标系后，在场景中操作物体对象时就会有针对性地通过x轴、y轴、z轴实现物体对象位置的调整。为什么要告诉大家坐标系呢？因为它其实和我们现实生活一样，现实世界由东、西、南、北四个方向组成，这样大家就可以根据这四个方向建房屋、修路等。虚拟世界也需要坐标系，只是它表示的比较简单而已。

 Unity引擎的左手坐标系也被称为世界坐标系，做游戏开发时需要美工制作美术模型，运用MAX工具把建好的模型放到游戏场景中。在默认情况下，局部坐标和世界坐标系的原点是重合的，不能把所有的模型都叠加在世界坐标系的原点上，因此需要移动模型。模型移动时就会发生模型的局部坐标到世界坐标的转换，这个移动过程就是把模型的局部坐标转化成世界坐标。只是这个转化过程是在引擎编辑器内部实现的，实际上它就是将模型的各个点与世界矩阵相乘得到的。Unity编辑器中的物体都在世界坐标系里面，比如我们通常使用的函数transform.position，它就是获取到当前物体的世界坐标位置，用户无须自己去计算，因为引擎内部已经计算好了。明白了原理后，再使用编辑器解决问题更有助于理解，做到知其然且知其所以然。如果要获取物体自身的坐标，也就是局部坐标，可以使用函数transform.localPosition获取当前模型的局部坐标。

 用Unity引擎开发移动端手游会经常用到屏幕坐标系，屏幕坐标系就是通常使用的电脑屏幕，它是以像素为单位的，屏幕左下角为（0,0）点，右上角为（Screen.Width, Screen.Height）点，Z的位置是根据相机的Z缓存值确定的。通常使用鼠标在屏幕上单击物体，它就是屏幕坐标。通过函数Input.mousePosition可以获得鼠标位置的坐标。我们使用的虚拟摇杆可以在屏幕上滑动，它也是屏幕坐标，可以通过函数Input.GetTouch(0).position获取到手指触摸屏幕坐标。在游戏开发中，比如单击场景中的3D物体就需要从屏幕上发射一条射线与物体的包围盒相交，用于判断是否选中物体，对于UI的操作也都是基于屏幕坐标系的。

 通过相机才能看到虚拟世界的物体。相机有自己的视口坐标，物体要转换到视口坐标才能被看到。相机的视口左下角为（0,0）点，右上角为（1,1）点，Z的位置是以相机的世界单位来衡量的。（0,0）点和（1,1）点是通过公式进行缩放计算的，这里面存在一个变换，读者了解就可以了。这也是为什么视口的大小通常都是（0,0）和（1,1），效果如图1-2所示，图的中心点是摄像机。

 [image:]
 图1-2　视口大小

 下面介绍世界坐标、屏幕坐标、相机坐标之间的转换方式。举一个简单的例子，在一个空场景里面放置一个立方体，物体在编辑器中也就是世界坐标系中的摆放如图1-3所示。

 [image:]
 图1-3　物体在编辑器中的摆放

 获取物体位置的通常写法是transform.position，它表示的是立方体在3D世界中的世界坐标的位置。如果使用的是触摸屏幕，那么可以通过函数Input.GetTouch(0).position获取到屏幕坐标。它们之间的转换方式如下。

 	 世界坐标到屏幕坐标的转化函数：camera.WorldToScreenPoint(transform.position)。

 	 屏幕坐标到视口坐标的转化函数：camera.ScreenToViewportPoint(Input.GetTouch(0). position)。

 	 世界坐标到视口坐标的转化函数：camera.WorldToViewportPoint(obj.transform.position)。

 这些转换也是固定流水线的矩阵变换，只是Unity将其封装好了而已。如果想学习固定流水线，可以参考《手把手教你架构3D游戏引擎》一书，里面有固定流水线的详细讲解，下面介绍向量运算。

 1.2　向量

 向量的基本运算包括加法、减法、点乘、叉乘、单位化运算等，其中减法、点乘、叉乘、单位化运算在游戏开发中使用得最为广泛。首先介绍一下向量，向量的表示如图1-4所示。

 [image:]
 图1-4　向量的表示

 向量是具有方向和长度的矢量，它并不是一条射线，向量有2D、3D、4D等的。在游戏开发里面一般使用的是2D向量和3D向量。2D向量表示为<x,y>两个数值，而3D向量是由<x,y,z>三个数值表示的。3D游戏开发中经常使用的3D向量的几何表示如图1-5所示。

 [image:]
 图1-5　3D向量的几何表示

 图中向量a在3D坐标系中用三个值表示：<az，ay，az>，下面介绍向量的加法运算。

 1.2.1　向量的加法

 顾名思义，向量的加法就是两个向量相加，几何表示如图1-6所示。

 [image:]
 图1-6　向量加法的几何表示

 图1-6是两个向量相加的示意图，二者相加后得到的值还是一个向量，其运算方法就是两个向量对应项的相加。向量的加法在游戏开发中一般表示物体从一个位置移动到另一个位置，如图1-7所示。

 [image:]
 图1-7　向量的加法在游戏中的表示

 如果立方体移动到球体的位置，通常的做法是先计算出二者的方向，也就是从V1指向V2的向量，计算公式是Vector3 dir = (V2−V1).normalized，公式的含义是将两个向量相减并且单位化，normalized表示向量单位化，这是使用Unity自带的接口实现的，方向是没有大小的。假设V1表示的物体为obj的位置，那么它当前的位置表示为obj.transform.position，它移动到V2的位置，用Unity的计算公式表示为obj.transform.position = obj.transform.position + dir * 0.5（系数）。系数的大小是可以任意设置的，要根据效果表现设置系数大小。读者可能比较熟悉这个公式，它的原型正是直线方程y = ax + b，在不知不觉中我们把数学运算公式就用上了，所以编程还是非常有趣的，接下来再看看向量的减法。

 1.2.2　向量的减法

 向量的减法在几何图上的表示如图1-8所示。

 图1-8中的黑色箭头表示的是向量a和向量b。为了做减法，将向量b取反，再相加得到的是a−b。向量的减法在游戏开发中主要应用在计算方向上，正如图1-7所示，一个物体从位置V1移动到位置V2，首先要做的就是确定其移动的方向，这个方向的计算公式是Vector3 dir = (V2−V1).normalized。除了计算方向外，计算两个物体之间的距离也是向量相减然后求平方根得到的，在Unity中可以使用函数Vector3.Distance(Vector3 a, Vector3 b)获取两个向量之间的距离。两个物体之间的距离的计算在游戏中运用得非常多，比如导弹要击中某个物体，需要根据导弹的射程也就是距离计算，MMOARPG游戏中玩家与怪物之间进行战斗也要判断两个物体之间的距离，从而决定是否击中对方，只有在两者相距小于某个设定的数值时，也就是在攻击范围内才能发起攻击。玩家攻击怪物的游戏效果如图1-9所示。

 [image:]
 图1-8　向量减法的几何表示

 [image:]
 图1-9　玩家攻击怪物的游戏效果

 1.2.3　向量点乘

 网上流传着这样一句话：向量点乘计算角度，向量叉乘计算方位。在游戏开发中通常使用点乘计算角度，点乘得到的值是个弧度常量，当然也可以将其转化成角度值。形象地说就是，当一个怪物在你身后时，叉乘可以判断你是往左转还是往右转才能更快地转向怪物，点乘得到当前面的朝向和到怪物的方向所成的角度大小。点乘向量的几何图表示如图1-10所示。

 [image:]
 图1-10　点乘向量的几何图

 其中，|a|表示向量a的长度，|b|表示向量b的长度。θ表示向量a和向量b的角度。计算公式a × b = |a| × |b| × cosθ，也可以通过算式a × b =|ax × bx|+ ay × by计算。

 公式的几何意义是：向量a在向量b上的投影。为了让读者更好地理解，形象的表示为一个手电筒照射两个向量，可以看到光束照射的位置就是向量的投影，如图1-11所示。

 [image:]
 图1-11　向量的投影

 还有一个问题，为什么是cosθ，看图1-12就会立刻明白了，在使用向量点乘时，必须确保向量是有意义的。

 [image:]
 图1-12　向量点乘的计算表示

 上面讲述的都是在2D空间上的向量点乘，在Unity游戏开发中可以直接调用Unity提供的库函数Vector2.Dot(Vector2 a, Vector2 b)，返回值是一个float型的数值。接下来介绍向量在3D空间的表示，如图1-13所示。

 [image:]
 图1-13　3D向量在3D空间的表示

 计算方法跟2D空间是一样的，只是3D空间多了一个z轴。当然，在Unity 3D开发中计算点乘不用这么复杂，可以直接使用Unity提供的库函数Vector3.Dot(Vector3 a, Vector3 b)。之所以介绍这么多也是为了让开发者更容易理解向量的点乘计算。在游戏中，比如玩家转向NPC（非玩家角色）、玩家转向怪物等都与向量的点乘相关，它的游戏效果如图1-14所示。

 [image:]
 图1-14　玩家转向NPC的游戏效果

 1.2.4　向量叉乘

 两个向量叉乘得到的是一个向量，这个向量主要用于表示两个向量的位置关系，比如一个物体是在另一个物体的哪个方位？是前方、后方，还是左方、右方？向量叉乘表示如图1-15所示。

 [image:]
 图1-15　向量叉乘表示

 向量叉乘的计算公式是a × b = |a|×|b| × sinθ。其中|a|表示a的长度值，|b|表示b的长度值。θ表示两个向量之间的夹角，a × b得到的是一个垂直于向量a和向量b的向量。在Unity 3D空间的表示如图1-16所示。

 [image:]
 图1-16　向量叉乘计算

 假定向量a和向量b始于原点（0, 0, 0），那么cx，cy，cz的计算公式如下所示。

 [image:]

 通过上面的公式可求出a×b的值，以上是理论阐述。在Unity中可以直接调用引擎提供的接口Vector3.Cross(Vector3 a, Vector3 b)得到值类型是Vector3，也就是垂直于向量a和b的向量。向量叉乘如何在游戏中运用，在一个平面内的两个非平行向量叉乘的结果是这个平面的法向量，这个法向量是有方向的，它的方向可以用“右手定则”来判断。具体的判断方法是：若坐标系是满足右手定则的，当右手的四指从向量a以不超过180°的转角转向向量b时，竖起的大拇指的指向是向量n的方向，也就是上图中的a×b的方向。在右手坐标系中，当向量a和向量b作叉乘运算时，利用“右手定则”可以知道：当法向量n与某一坐标轴同向时，四指方向为逆时针方向；当法向量n与该坐标轴反向时，四指方向为顺时针方向。同时“右手定则”要求转角不超过180°的方向，所以用叉乘判断的转向一定是最优转向（所要转动的角度最小，转动的代价也就最小）。在游戏中可利用这点来判断一个角色是顺时针转动还是逆时针转动才能更快地转向一个敌人，而点乘计算得到的是角度，与叉乘还是有区别的。下面再举个例子给读者讲解一下，如图1-17所示的方向盘转向。

 [image:]
 图1-17　方向盘转向

 为了便于学习，先把代码给大家展示一下：

 void RotateWheel (Vector3 pos)
 {
 currVec = pos - wheelPos;//计算方向盘中心点到触控点的向量

 Vector3 normalVec = Vector3.Cross(currVec, oldVec);//计算法向量
 float vecAngle = Vector2.Angle(currVec, oldVec);//计算两个向量的夹角

 //使用“右手定则”可知，当大拇指方向指向我们时，四指方向为逆时针方向
 //当大拇指方向远离我们时，四指方向为顺时针方向
 //这里叉乘后的法向量平行于z轴，所以用法向量的z分量的正负判断法向量方向
 if (normalVec.z > 0)//和z轴同向，则顺时针转
 {
 wheelObj.transform.Rotate(Vector3.forward, -vecAngle);//顺时针转
 }
 else if (normalVec.z < 0)//和z轴反向，则逆时针转
 {
 wheelObj.transform.Rotate(Vector3.forward, vecAngle);//逆时针转
 }

 oldVec = currVec;//赋值
 }

 在赛车游戏中通常会用方向盘，以上代码就是运用向量叉乘判断一个方向盘的转向问题，希望读者能够真正掌握向量的基本运算。这些都是最基础的知识，关于向量的运算就给大家介绍到这里，下面开始介绍矩阵运算。

 1.3　矩阵

 向量和矩阵是线性代数非常重要的组成部分，3D引擎底层对于矩阵的使用非常多，比如局部坐标到世界坐标的转化、世界坐标到投影坐标的转化等。它们之间的转化是通过与矩阵相乘得到的，这里面就涉及3D固定流水线。作为3D游戏开发者，必须要知道两个流水线：一个是固定流水线，另一个是可编程流水线。下面简单介绍一下二者。先说固定流水线，简单地说就是一个3D物体在显示器上成像的过程，读者可能会有疑问，这与矩阵有什么关系呢？先给大家看一下固定流水线，如图1-18所示。

 [image:]
 图1-18　固定流水线

 下面介绍一下如何将物体从最初的局部坐标经过一系列矩阵变换转换到另一个坐标系，转换矩阵中最重要的是模型矩阵、视图矩阵、投影矩阵这三个矩阵。首先，顶点坐标开始于局部空间也称为局部坐标，然后经过世界坐标、观察坐标、裁剪坐标，最后以屏幕坐标结束，这些变换最终目的是将物体在屏幕上展现出来，整个流程如图1-19所示。

 [image:]
 图1-19　矩阵变换

 如果大家还感觉迷惑，我把图1-19再给大家详细解释一遍，为了让读者更好地领会它的含义，我将其总结成以下五点：

 	 局部坐标是对象相对于局部原点的坐标，也是对象开始的坐标。

 	 将局部坐标转换为世界坐标，世界坐标是作为一个更大空间范围的坐标系。这些坐标是相对于世界原点的。

 	 接下来我们将世界坐标转换为观察坐标，观察坐标是指以摄像机或观察者的角度观察的坐标。

 	 在将坐标处理到观察坐标之后，我们需要将其投影到裁剪坐标上。裁剪坐标是在−1.0到1.0范围内判断哪些顶点将会出现在屏幕上的。

 	 最后，我们需要将裁剪坐标转换为屏幕坐标，我们将这一过程称为视口变换（Viewport Transform）。视口变换将位于−1.0到1.0范围内的坐标转换到由视口函数所定义的坐标范围内。转换的坐标将会送到光栅器中，由光栅器将其转化为片段。

 在这里结合案例给大家描述一下，将上述思想运用到游戏开发中。比如用Unity编辑器搭建一个游戏场景，首先请美工用MAX工具建好需要的模型并将其导成fbx文件格式。建好的模型其实就是一个简单的个体，也就是个体的坐标，即局部坐标，从MAX导出模型时要将其模型位置重置成（0,0,0），然后将其拖放到Unity编辑器里面。在默认情况下，它是与世界坐标系位置重合在世界坐标的（0,0,0）位置上的。因为物体不能都堆放在世界中心点（0,0,0）的位置上，需要拖动将其摆放在编辑器的不同位置上，拖放的过程就是在Unity引擎内部实现一个把模型从局部坐标到世界坐标的变换，这个变换其实就是模型的点与世界矩阵相乘转化到世界坐标上的过程。接下来要在程序中看到这个场景，就需要放置一个虚拟摄像机，将物体放到摄像机里面，这个过程就是把物体从世界坐标转换到观察坐标，这中间是与摄像机矩阵相乘得到的，当然后面就要做消隐，也就是背面消除，因为只能看到物体的正面，背面是看不到的，这也是程序中为了优化效率考虑的，背面不需要绘制。为了使场景明亮，需要打上灯光，场景点亮之后，就可以通过虚拟摄像机来观察虚拟世界了，虚拟摄像机其实跟现实生活中人的眼睛一样。人眼有观察距离，眼睛两侧的物体是看不到的，在虚拟世界中也是一样的，看不到的物体我们就可以将其裁减掉，这里面就涉及观察坐标到透视坐标的转换，为了方便计算将物体做投影计算。为了在显示屏幕上看到，我们将其转化到视口坐标上。最后就是光栅化。这样整个固定流水线就完成了，这中间涉及的变换都与矩阵有关。

 再介绍一下可编程流水线。随着硬件的发展，显卡的运算能力得到了很大提升，这也就是通常说的GPU编程。在显卡不发达时，绘制3D物体都是通过固定流水线实现的，随着显卡的提高，就出现了可编程流水线，可编程流水线其实就是把CPU上进行的运算搬到显卡的GPU中运算。也就是说，将矩阵之间的换算放到GPU中计算，这样就可以把CPU解放出来。关于可编程流水线，我会在第14章给大家详细介绍。

 矩阵的运算包括矩阵加法、矩阵减法、矩阵乘法等，在游戏开发中使用最多的还是矩阵乘法，本书的编写以实用为主，因此主要介绍矩阵乘法。上面介绍了固定流水线和可编程流水线，矩阵的运用远远不止这些。下面就介绍一下矩阵在Unity编辑器中的使用，在讲解的过程中同时给大家展现一下Unity引擎内部是如何处理的。

 1.3.1　平移矩阵

 在3D空间中，把一个对象从一个位置移到另一个位置，在引擎底层进行了平移矩阵的换算，下面给大家具体讲一下，如图1-20所示。

 [image:]
 图1-20　3D空间位置平移

 在3D空间中，把对象从P点移动到P'点，运用数学公式，可以计算出二者的转换关系，如下所示。

 [image:]

 以上是多项式，根据这个多项式可以将它们换算成一个通用的并且可以使用矩阵表示的公式，如下所示。

 [image:]

 细心的读者可能会发现一个问题，在3D空间中，点都是三维的，为什么上面矩阵换算公式是四维的？这涉及齐次坐标的概念，在这里先给大家简单介绍一下。在进行矩阵计算时，需要将三维的点转化成齐次坐标，也就是转化成4D进行计算，因为如果不转换，矩阵的线性变换是很难实现的，比如物体的平移变换、缩放变换等三维矩阵是无法完成的，这个大家可以自己测试一下。

 向量和点都是三维的，那怎样区分二者呢？如果使用的是点，那就在点的最后再加一项1，齐次坐标就表示为（x,y,z,1）。如果使用的是向量，那就在向量的最后加一项0，齐次坐标就表示为（x,y,z,0）。但是向量是不可以通过矩阵换算的，点是可以的，所以以上公式表示的都是对三维的点进行换算的。在使用Unity编辑器时，通常会把物体从一个位置移动到另一个位置。由于Unity提供了非常简单的操作方式，初学者只要在编辑器中拖拉一下物体就可以变换位置，也可以单击放大缩小按钮对物体进行缩放操作。在Unity中的操作方式如图1-21所示，此图为将一个白色的物体放到Unity编辑器里面拖放。下面介绍矩阵的另一个运算——缩放。

 [image:]
 图1-21　物体位移示意图

 1.3.2　矩阵缩放

 在3D游戏中，经常需要对物体进行缩放变换，先从理论上介绍一下如何缩放，再通过Unity给大家介绍一下。物体的缩放和平移类似，也需要缩放矩阵，如图1-22所示。

 [image:]
 图1-22　3D物体缩放示意图

 在3D空间中对于物体的缩放并不是凭空产生的，它也是经过运算得到的。 运算公式如下所示。

 [image:]

 上述公式可以写成矩阵换算，如下所示。

 [image:]

 在Unity编辑器的实际操作过程中，引擎为开发者提供了非常便利的接口，只需要在编辑器里面简单操作就可以达到缩放的效果。它实际运行的是调用引擎内部的缩放变换矩阵，也就是用上面的矩阵公式表示的，在Unity中缩放效果如图1-23所示。

 [image:]
 图1-23　Unity编辑器中缩放效果

 两个机器人彼此之间是经过缩放变换大小的，它就是引擎内部通过矩阵缩放实现的，类似的还有矩阵旋转。

 1.3.3　矩阵旋转

 在3D游戏开发中，游戏中的3D物体旋转可以通过矩阵旋转、四元数旋转、欧拉角旋转得到。在本节中主要介绍矩阵旋转，矩阵旋转最基本的是绕x、y、z轴旋转。矩阵旋转在引擎中使用得比较多，编程时一般采用四元数或者欧拉角实现。下面分别介绍绕x、y、z轴旋转矩阵。绕x轴旋转如图1-24所示。

 [image:]
 图1-24　绕x轴旋转

 在这里我直接给出旋转结果矩阵，如下所示。

 [image:]

 接下来绕y轴旋转，如图1-25所示。

 [image:]
 图1-25　绕y轴旋转

 绕y轴旋转矩阵如下所示。

 [image:]

 绕z轴旋转如图1-26所示。

 [image:]
 图1-26　绕z轴旋转

 对应绕z轴旋转矩阵如下所示。

 [image:]

 以上是矩阵在3D游戏中的计算方式，Unity引擎已经为开发者提供了旋转接口，函数transform.Rotate(new Vector3(0,1,0))表示绕y轴旋转，在Rotate函数中使用了向量，它们的参数分别表示x、y、z，上述算式中y的值为1表示的是绕y轴旋转，如果是x轴为1表示的是绕x轴旋转，依此类推。接下来将其在Unity编辑器中的表现给大家展示一下，如图1-27所示。

 [image:]
 图1-27　绕x、y、z轴旋转效果图

 从右到左依次是正常摆放的角色、绕x轴旋转的角色、绕y轴旋转的角色、绕z轴旋转的角色。虽然通过工具可以很容易地将其旋转，其实在引擎内部是进行了上面列出的关于旋转矩阵的乘法计算。

 物体也可以绕x、y、z轴旋转或者x、y轴旋转，它的计算方式就是绕x、y、z轴的矩阵一起相乘，当然Unity也已经为开发者封装好了，开发者只负责使用即可。为什么不厌其烦地介绍这些知识，主要目的是告诉开发者原理，这样更有助开发者编写逻辑。接下来介绍一下四元数。

 1.4　四元数

 首先介绍一下什么是四元数，四元数本质上是个高阶复数，表达式为y = a + bi + cj + dk。在讲矩阵时提到了旋转，四元数在Unity里面主要也是用于旋转的，在Unity编辑器里面有个Transform组件，它包括位置（Position）、旋转（Rotation）和缩放（Scale）。Rotation就是一个四元数，但是不能直接对Quaterian.Rotation赋值。可以使用函数Quaterian.Eular(Vector3 angle)获取四元数，该函数返回的就是四元数。

 欧拉角表示为Quaternion.eulerAngles，欧拉角可以对其进行赋值，赋值表示如下所示。

 Quaternion.eulerAngles = new Vector3(0, 30, 0);

 四元数可以用来进行旋转，它的表达式是Quaternion.AngleAxis(float angle, Vector3 axis)，调用这个函数可以对物体进行旋转，当然还需要调用函数Quaternion.Lerp()在旋转时进行插值运算，这些函数都是在编写逻辑时调用的。四元数是不可以直接被赋值的，四元数推理比较麻烦，读者如果想了解可以自己在网上查阅资料，本节的主要目的是告诉读者用四元数解决问题，接下来说一下欧拉角。

 1.5　欧拉角

 欧拉角也是用于旋转的，只是它有一个致命的缺点，就是万向节死锁，欧拉角旋转我们在Unity开发中通常使用的函数是transform.Rotate(Vector3 angle)。

 现在介绍一下万向节死锁，其实就是在3D空间中某两个轴在旋转时重叠了，不论你如何旋转，三个轴就变成了两个轴，给大家举个会出现万向节死锁的例子：

transform.Rotate(new Vector3(0, 0, 40));
transform.Rotate(new Vector3(0, 90, 0));
transform.Rotate(new Vector3(80, 0, 0));

 我们只需要固定中间一句代码，即使y轴的旋转角度始终为90°，那么你会发现无论怎么调整x轴和z轴的旋转角度，它们会像一个钟表的表针一样总是在同一个平面上运动。

 万向节锁中的“锁”，其实是给人一种误导，这可能也是让很多人觉得难以理解的一个原因。实际上，它并没有锁住任何一个旋转轴，只是在这种旋转情况下我们会感觉丧失了一个维度。以上面的例子来说，尽管固定了第二个旋转轴的角度为90°，但我们原以为依靠改变其他两个轴的旋转角度是可以得到任意旋转位置的（因为按我们的理解，两个轴应该控制的是两个空间维度），而事实是它被“锁”在了一个平面上，即只有一个维度了，缺失了一个维度。而只要第二个旋转轴不是±90°，我们就可以依靠改变其他两个轴的旋转角度来得到任意旋转位置。

 从最简单的矩阵来理解，还是使用x、y、z的旋转顺序。当y轴的旋转角度为90°时，我们会得到下面的旋转矩阵。

 [image:]

 我们对上述矩阵进行左乘可以得到下面的结果：

 [image:]

 当我们改变第一次和第三次的旋转角度时，是同样的效果，而不会改变第一行和第三列的任何数值，从而缺失了一个维度。我们再尝试着理解下它的本质，万向节锁出现的本质原因，是因为从欧拉角到旋转的映射并不是一个覆盖映射，即它并不是在每个点处都是局部同胚的。通俗地解释一下，这意味着从欧拉角到旋转是一个多对一的映射（即不同的欧拉角可以表示同一个旋转方向），而且并不是每一个旋转变化都可以用欧拉角来表示。

 1.6　小结

 数学的基础知识已经给大家讲完了，这些最基本的数学知识开发者要熟练掌握。对于图形学的一些高级算法大家有兴趣可以学习一下，用得比较多的是贝济埃曲线、B样条曲线等，二者都可以应用到刀光拖尾算法、曲线插值算法中。在Unity中有iTween曲线插件和DotTween曲线插件等，下面开始讲解开发3DMMORPG游戏经常使用的Avatar换装开发技术。

 第2章

 Avatar换装系统

 换装系统又称纸娃娃系统，是运用在游戏开发上的关键技术。市面上关于换装的游戏非常多，3D MMORPG游戏中也使用了角色换装技术，所以掌握换装技术是非常重要的。换装系统原理也同样适用于换武器、换表情等。我在CSDN在线教育和51CTO在线教育都有关于换装的免费视频教程，配合视频教程学习本章内容效果会更好。学好技术就要将它们在游戏开发中灵活运用。本章先讲换装实现原理，再讲换装的编程实现，最后提醒读者在运用该技术解决问题时应注意的事项。

 2.1　换装原理

 游戏内的角色，能够像纸娃娃换装那样让玩家为自己的角色改变外观，一直深受广大玩家欢迎。一般而言，建好的3D模型，如果要将其中一个部位换成另外一个形状，最直接的做法是将该物件的模型Mesh替换掉，那么外观就改变了，但这种方法如果运用在需要做动作的模型上，被置换的部位可能就不会正常做动作了，更糟的状况是可能连模型显示的位置及方向都是错误的，所以，直接更换Mesh的方法只适用于静态模型物件。为此，必须找出更深入的方法来实现换装的功能。

 首先看看模型的结构。在Hierarchy视窗中将物件展开，我们会发现几个名称相同并使用数字区别的物件，它们分別代表人物各部位的模型。由此可知，整个人物包含多个相同部位的模型，其在Unity中的表现如图2-1所示。对象FemaleAvatar的子节点Famale_Bip01是整个人物的骨架结构，人物的动作组件则设置在顶层对象（FemaleAvatar）的Animation组件中，这个模型是资源模型，而不是实际上要放在场景中的目标物件。模型的制作是需要美术将其呈现出来的，最后交付给程序使用。在这里给读者介绍模型资源结构的主要目的是希望读者了解模型制作要求。

 图2-1的FemaleAvatar对象中每个部位都有多个模型部件，这些部件就是用来换装的，其在Unity场景中的效果表现如图2-2所示。

 [image:]
 图2-1　Avatar资源表示

 身体的每个部位是由两部分组成的，这也是换装模型的源文件，将模型作为来源模型资源，再依照需求将资源模型各部位重新组合成一个新的目标模型。接下来开始制作源模型Source和目标模型Target。现将人物模型FemaleAvatar放到场景中，同时再复制一个作为目标模型使用，把它们分别命名为Source和Target，在Unity编辑器的操作如图2-3所示。

 [image:]
 图2-2　资源在Unity的表现

 [image:]
 图2-3　目标模型表示

 其中targetmodel模型是将源FemaleAvatar对象中除了Female_Bip01外其他部分都删除掉，将父节点名字改成targetmodel，这样就完成了targetmodel对象的制作，是不是很简单？然后将它们拖入Resources文件夹中作为实例化模型。接下来需要为其设置一个动作，可以循环播放的动作，设置组件参数如图2-4所示。

 [image:]
 图2-4　编辑器的动作设置

 Source物件是作为来源资源使用的，实际在场景中不需要显示。Source中的各部位名称必须要有编号，例如，face-001。为了便于区分换装的各个Mesh部分，如果没有编号，请开发者自行加上编号，这些工作需要程序员和美工事先定义好，完成以上的准备工作，就要开始写程序了。程序员的主要工作是先将Source中每个物件的SkinnedMeshRenderer取出并储存在data表中，data的内容则是根据部位分类索引。接下来在Target中加入SkinnedMeshRenderer，然后在每个部位取出一个指定的Mesh，利用CombineInstance 类及 Mesh.CombineMeshes()将各部位模型合并，同时也要重新排列材质，依照取出的 SkinnedMeshRenderer的bone的名称，找到与Target的Female_Bip01子物件内名称相对应的物件重建骨架列表。最后将这些重新组合建立的资源赋给Target的各个SkinnedMeshRenderer，如此就可完成换装的工作了。原理搞清楚了，下面开始实现具体代码。

 2.2　换装代码实现

 在讲解代码之前，我喜欢先把代码给读者完整展示一下，而后告诉读者具体的实现思路以及代码讲解。以下是完整的换装源代码。

using UnityEngine;
using System.Collections.Generic;
public class AvatarSys : MonoBehaviour {
 //来源模型资源的物件
 private Transform source;
 //目标物件
 private Transform target;
 //实例化的源文件和目标文件
 private GameObject sourceobj;
 private GameObject targetobj;
 //模型资源
 private Dictionary<string, Dictionary<string, Transform>> data = new Dictionary<string, Dictionary<string, Transform>>();
 //播放的动作
 private Animation mAnim;
 //目标物件的骨架
 private Transform[] hips;
 //目标物件各部位的 SkinnedMeshRenderer（参照）
 private Dictionary<string, SkinnedMeshRenderer> targetSmr = new Dictionary<string, SkinnedMeshRenderer>();

 public static AvatarSys instance;
 //各部分换装的名字
 string[,] avatarstr = new string[,] { { "coat", "003" }, { "hair", "003" }, { "pant", "003" }, { "hand", "003" }, { "foot", "003" }, { "head", "003" } };

 string[,] avatarstr0 = new string[,] { { "coat", "001" }, { "hair", "001" }, { "pant", "001" }, { "hand", "003" }, { "foot", "003" }, { "head", "003" } };
 string[,] avatarstr1 = new string[,] { { "coat", "003" }, { "hair", "001" }, { "pant", "001" }, { "hand", "003" }, { "foot", "001" }, { "head", "001" } };

 private float pos;

 //用于初始化
 void Start ()
 {
 instance = this;
 AvatarManager(0.0f);
 AvatarManager0(1.0f);
 //AvatarManager1(2.0f);
 }
 //创建多个换装模型
 void AvatarManager(float pos)
 {
 InstantiateAvatar();
 InstantiateSkeleton(pos);

 LoadAvatarData(source);
 hips = target.GetComponentsInChildren<Transform>();
 Inivatar();
 }

 void AvatarManager0(float pos)
 {
 InstantiateAvatar();
 InstantiateSkeleton(pos);

 LoadAvatarData(source);
 hips = target.GetComponentsInChildren<Transform>();
 Inivatar0();
 }

 void AvatarManager1(float pos)
 {
 InstantiateAvatar();
 InstantiateSkeleton(pos);

 LoadAvatarData(source);
 hips = target.GetComponentsInChildren<Transform>();
 Inivatar1();
 }

 //实例化Avatar模型
 void InstantiateAvatar()
 {
 sourceobj = Instantiate(Resources.Load("FemaleAvatar")) as GameObject;
 source = sourceobj.transform;
 sourceobj.SetActive(false);
 }
 //实例化骨骼动画
 void InstantiateSkeleton(float pos)
 {
 targetobj = Instantiate(Resources.Load("targetmodel")) as GameObject;
 target = targetobj.transform;
 target.transform.position = new Vector3(pos, 0.0f, 0.0f);
 }
 //加载Avatar数据
 void LoadAvatarData(Transform source)
 {
 data.Clear();
 targetSmr.Clear();

 if (source == null)
 return;
 SkinnedMeshRenderer[] parts =
source.GetComponentsInChildren<SkinnedMeshRenderer>(true);
 foreach (SkinnedMeshRenderer part in parts)
 {
 string[] partName = part.name.Split('-');
 if(!data.ContainsKey(partName[0]))
 {
 data.Add(partName[0], new Dictionary<string, Transform>());
 GameObject partobj = new GameObject();
 partobj.name = partName[0];
 partobj.transform.parent = target;

 targetSmr.Add(partName[0], partobj.AddComponent<SkinnedMeshRenderer>());
 }
 data[partName[0]].Add(partName[1], part.transform);
 }
 }
 //改变Avatar模型
 public void ChangeMesh(string part, string item)
 {
 SkinnedMeshRenderer smr = data[part][item].GetComponent<SkinnedMeshRenderer>();

 List<Transform> bones = new List<Transform>();
 foreach (Transform bone in smr.bones)
 {
 foreach (Transform hip in hips)
 {
 if (hip.name != bone.name)
 {
 continue;
 }
 bones.Add(hip);
 break;

 }
 }
 targetSmr[part].sharedMesh = smr.sharedMesh;
 targetSmr[part].bones = bones.ToArray();
 targetSmr[part].materials = smr.materials;
 }

 void Inivatar()
 {
 int nLength = avatarstr.GetLength(0);
 for (int i = 0; i < nLength; i++)
 {
 ChangeMesh(avatarstr[i, 0], avatarstr[i, 1]);
 }
 }

 void Inivatar0()
 {
 int nLength = avatarstr0.GetLength(0);
 for (int i = 0; i < nLength; i++)
 {
 ChangeMesh(avatarstr0[i, 0], avatarstr0[i, 1]);
 }
 }

 void Inivatar1()
 {
 int nLength = avatarstr1.GetLength(0);
 for (int i = 0; i < nLength; i++)
 {
 ChangeMesh(avatarstr1[i, 0], avatarstr1[i, 1]);
 }
 }

}

 代码中都有注释，为了便于读者理解，再解释一下脚本的功能，程序将模型资源的存储放到了一个Dictionary字典列表里面，代码如下所示。

 //模型资源
 private Dictionary<string, Dictionary<string, Transform>> data = new Dictionary<string, Dictionary<string, Transform>>();

 模型Mesh的挂接部位SkinnedMeshRenderer放在如下的列表里面，代码如下所示。

 //目标物件各部位的 SkinnedMeshRenderer （参照）
 private Dictionary<string, SkinnedMeshRenderer> targetSmr = new Dictionary<string, SkinnedMeshRenderer>();

 下面开始介绍代码的编写思路。我们可以创建多个Avatar模型，创建Avatar模型的函数如下所示。

 //创建多个换装模型
 void AvatarManager(float pos)
 {
 InstantiateAvatar();
 InstantiateSkeleton(pos);

 LoadAvatarData(source);
 hips = target.GetComponentsInChildren<Transform>();
 Inivatar();
 }

 该函数调用了多个接口函数，第一个函数 InstantiateAvatar()用于创建资源实例，其实就是加载要更换的模型资源，加载完成后将其设置成不可见，代码如下所示。

 //实例化Avatar模型
 void InstantiateAvatar()
 {
 sourceobj = Instantiate(Resources.Load("FemaleAvatar")) as GameObject;
 source = sourceobj.transform;
 sourceobj.SetActive(false);
 }

 更换的资源实例化后，需要将它们挂接到骨骼动画上，所以接下来需要实例化出Target目标模型——骨骼动画，也就是函数InstantiateSkeleton(float pos)要做的事情，代码如下所示。

 //实例化骨骼动画
 void InstantiateSkeleton(float pos)
 {
 targetobj = Instantiate(Resources.Load("targetmodel")) as GameObject;
 target = targetobj.transform;
 target.transform.position = new Vector3(pos, 0.0f, 0.0f);
 }

 资源和骨骼动画实例化后就要考虑更换Mesh，也就是换装的操作。函数InstantiateAvatar()只是把资源实例化出来，还没有把各个Mesh取到，这样还不能进行换装，在换装之前还要做的一项工作就是拿到各个部分的Mesh。函数LoadAvatarData(Transform source)就是做这个工作的，代码如下所示。

 //加载Avatar数据
 void LoadAvatarData(Transform source)
 {
 data.Clear();
 targetSmr.Clear();

 if (source == null)
 return;
 SkinnedMeshRenderer[] parts = source.GetComponentsInChildren<SkinnedMeshRenderer>(true);
 foreach (SkinnedMeshRenderer part in parts)
 {
 string[] partName = part.name.Split('-');
 if(!data.ContainsKey(partName[0]))
 {
 data.Add(partName[0], new Dictionary<string, Transform>());
 GameObject partobj = new GameObject();
 partobj.name = partName[0];
 partobj.transform.parent = target;

 targetSmr.Add(partName[0], partobj.AddComponent<SkinnedMeshRenderer>());
 }
 data[partName[0]].Add(partName[1], part.transform);
 }
 }

 执行该函数后，就拿到了运用于换装的各个Mesh，下面开始换装了，换装的函数是public void ChangeMesh(string part, string item)，其参数分别表示换装的名字和换装项的名字，类似这个"coat""003"，函数代码如下所示。

 //改变Avatar模型
 public void ChangeMesh(string part, string item)
 {
 SkinnedMeshRenderer smr = data[part][item].GetComponent<SkinnedMeshRenderer>();

 List<Transform> bones = new List<Transform>();
 foreach (Transform bone in smr.bones)
 {
 foreach (Transform hip in hips)
 {
 if (hip.name != bone.name)
 {
 continue;
 }
 bones.Add(hip);
 break;

 }
 }
 targetSmr[part].sharedMesh = smr.sharedMesh;
 targetSmr[part].bones = bones.ToArray();
 targetSmr[part].materials = smr.materials;
 }

 这样整个换装代码的流程就写完了，该脚本可以直接挂接到场景中的某个对象上，该程序是挂接到Camera上面的，如图2-5所示。

 [image:]
 图2-5　挂接Avatar脚本

 挂接好脚本后，需要把要实例化的资源模型FemaleAvatar和targetmodel放到Resources资源文件夹下面，主要是便于实例化加载，如图2-6所示。

 [image:]
 图2-6　资源实例存放目录

 接下来为了便于换装操作，需要做几个UI按钮，搭建一个舞台场景，如图2-7所示。

 [image:]
 图2-7　UI界面设计

 最后需要编写一个脚本用于UI的操作，完整的代码如下所示。

using UnityEngine;
using System.Collections;

public class Avatar_Btn : MonoBehaviour {

 int count = 0;

 public void OnClick()
 {
 string name = this.gameObject.name;
 switch (name)
 {
 case "coat":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("coat", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("coat", "003");
 count = 0;
 }
 break;
 case "hair":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("hair", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("hair", "003");
 count = 0;
 }
 break;
 case "hand":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("hand", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("hand", "003");
 count = 0;
 }
 break;
 case "head":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("head", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("head", "003");
 count = 1;
 }
 break;
 case "pant":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("pant", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("pant", "003");
 count = 0;
 }
 break;
 case "foot":
 if (count == 0)
 {
 AvatarSys.instance.ChangeMesh("foot", "001");
 count = 1;
 }
 else
 {
 AvatarSys.instance.ChangeMesh("foot", "003");
 count = 0;
 }
 break;
 }
 }
}

 该类实现了接口publicvoid OnClick()。调用AvatarSys脚本中的ChangeMesh完成换装，将该脚本挂接到UI的每个Button上面，如图2-8所示。

 [image:]
 图2-8　挂接UI单击事件脚本

 完成以上操作后就可以运行游戏了，效果如图2-9所示。

 [image:]
 图2-9　换装效果图

 角色在运动，单击头发按钮，角色的头发相比于图2-9已经被更换过了，如图2-10所示。

 [image:]
 图2-10　更换头发效果图

 再单击裤子，相比于图2-10效果，裤子已经被更换过了，如图2-11所示。

 [image:]
 图2-11　更换裤子效果图

 再看看换装后运行的资源效果，如图2-12所示。

 [image:]
 图2-12　更换资源效果图

 换装后的材质发生了改变，通过图2-12可以看出，有不同部位的裤子材质。利用该技术实现的跳舞游戏效果如图2-13和图2-14所示。

 [image:]
 图2-13　跳舞游戏效果图

 [image:]
 图2-14　跳舞游戏效果图

 能变换背包中的3种武器而已，这样无疑是浪费了97种武器所占用的资源。所以在了解如何换装后，实际操作时应该尽量把来源资源包装起来，只取出需要的资源来进行换装。

 2.3　小结

 本章的Avatar换装技术，是针对3D游戏设计的，2D游戏只需要换材质就可以了，比较简单，这里就不介绍了。3D的Avatar换装技术是作为游戏开发者和VR/AR开发者必须要掌握的技能之一。要想掌握Avatar技术主要从两方面入手：一是技术实现，Mesh是绑定到骨骼上的；二是3D MAX建模的要求，或者说是规范，要告诉美工如何建模。希望通过本章的学习，读者可以举一反三做一套更换面部表情的换装系统。

 第3章

 消息事件封装

 Unity游戏中通常使用的消息事件是直接使用委托实现的，这对用户来说使用起来不是很方便，因为游戏开发不是一个人可以完成的，需要一个团队的力量。所以需要封装一个统一的接口供开发者使用，使用事件机制的优点是不需要在UI上直接挂接代码。

 本章实现的消息事件封装采用的是监听和分发机制，它主要运用在逻辑判断时。比如数据加载完成后需要触发某个事件，遇到这种情况我们就可以使用监听和分发机制，方便逻辑判断，减少程序之间的耦合度，而且使用起来非常方便。监听服务器消息也可以运用事件监听机制，收到服务器的信息后可以执行某个事件。本章的消息事件封装主要是围绕客户端的事件封装，首先介绍消息类型定义和封装。

 3.1　消息类型定义和封装

 消息类型主要是针对不同消息定义的枚举。比如游戏有数据加载、关卡、游戏结束等，完成以上工作后，还可以继续执行其他操作。可以将定义的枚举类型单独放在一个文件中，定义的枚举代码如下所示：

public enum CEventType
{
 GAME_OVER,
 GAME_WIN,
 PAUSE,
 ENERGY_EMEPTY,
 GAME_DATA,
}

 消息系统的封装设计采用了模块化设计理念，首先要定义一个消息事件的基类，这个主要是消息底层的实现方式，主要目的是初始化消息，完整代码如下所示。

using UnityEngine;
using System.Collections;

public class CBaseEvent
{
 protected Hashtable arguments;
 protected CEventType type;
 protected Object sender;

 public CEventType Type
 {
 get
 {
 return this.type;
 }
 set
 {
 this.type = value;
 }
 }

 public IDictionary Params
 {
 get
 {
 return this.arguments;
 }
 set
 {
 this.arguments = (value as Hashtable);
 }
 }

 public Object Sender
 {
 get
 {
 return this.sender;
 }
 set
 {
 this.sender = value;
 }
 }

 public override string ToString()
 {
 return this.type + " [" + ((this.sender == null) ? "null" : this.sender.ToString()) + "] ";
 }

 public CBaseEvent Clone()
 {
 return new CBaseEvent(this.type, this.arguments, Sender);
 }

 public CBaseEvent(CEventType type, Object sender)
 {
 this.Type = type;
 Sender = sender;
 if (this.arguments == null)
 {
 this.arguments = new Hashtable();
 }
 }

 public CBaseEvent(CEventType type, Hashtable args, Object sender)
 {
 this.Type = type;
 this.arguments = args;
 Sender = sender;
 if (this.arguments == null)
 {
 this.arguments = new Hashtable();
 }
 }
}

 下面开始讲最核心的部分，消息事件的监听和分发。其实，监听和分发就是事先把消息事件注册到已定义好的Dictionary字典中，当需要触发时将其从字典中取出。

 3.2　消息事件的监听与分发

 事件的监听和分发接口封装在游戏逻辑中经常被调用，同时也是对外提供的接口。完整代码如下所示。

using System.Collections;
using System;
public delegate void CEventListenerDelegate(CBaseEvent evt);

public class CEventDispatcher
{
 static CEventDispatcher instance;
 public static CEventDispatcher GetInstance()
 {
 if (instance == null)
 {
 instance = new CEventDispatcher();
 }
 return instance;
 }

 private Hashtable listeners = new Hashtable();
 //增加事件监听
 public void AddEventListener(CEventType eventType, CEventListenerDelegate listener)
 {
 CEventListenerDelegate ceventListenerDelegate = this.listeners[eventType] as CEventListenerDelegate;
 ceventListenerDelegate =
(CEventListenerDelegate)Delegate.Combine(ceventListenerDelegate, listener);
 this.listeners[eventType] = ceventListenerDelegate;
 }
 //移除事件监听
 public void RemoveEventListener(CEventType eventType, CEventListenerDelegate listener)
 {
 CEventListenerDelegate ceventListenerDelegate = this.listeners[eventType] as CEventListenerDelegate;
 if (ceventListenerDelegate != null)
 {
 ceventListenerDelegate = (CEventListenerDelegate)Delegate.Remove(ceventListenerDelegate, listener);
 }

 this.listeners[eventType] = ceventListenerDelegate;
 }
 //分发事件消息
 public void DispatchEvent(CBaseEvent evt)
 {
 CEventListenerDelegate ceventListenerDelegate = this.listeners[evt.Type] as CEventListenerDelegate;

 if (ceventListenerDelegate != null)
 {
 try
 {
 ceventListenerDelegate(evt);
 }
 catch (System.Exception e)
 {
 throw new System.Exception(string.Concat(new string[]
 {
 "Error dispatching event",
 evt.Type.ToString(),
 ": ",
 e.Message,
 " ",
 e.StackTrace
 }),e);
 }
 }
 }

 public void RemoveAll()
 {
 this.listeners.Clear();
 }
}

 下面把代码的核心部分介绍一下，在代码中定义了一个委托函数用于事件消息回调：

public delegate void CEventListenerDelegate(CBaseEvent evt);

 这个委托函数大家应该非常熟悉，下面介绍事件监听的接口函数实现，如下所示。

public void AddEventListener(CEventType eventType, CEventListenerDelegate listener)
 {
 CEventListenerDelegate ceventListenerDelegate = this.listeners[eventType] as CEventListenerDelegate;
 ceventListenerDelegate =(CEventListenerDelegate)Delegate.Combine(ceventListenerDelegate, listener);
 this.listeners[eventType] = ceventListenerDelegate;
 }

 该函数事先将消息放到列表中，便于后面分发时从列表中取出数据。分发函数的封装代码如下所示。

public void DispatchEvent(CBaseEvent evt)
 {
 CEventListenerDelegate ceventListenerDelegate = this.listeners[evt.Type] as CEventListenerDelegate;

 if (ceventListenerDelegate != null)
 {
 try
 {
 ceventListenerDelegate(evt);
 }
 catch (System.Exception e)
 {
 throw new System.Exception(string.Concat(new string[]
 {
 "Error dispatching event",
 evt.Type.ToString(),
 ": ",
 e.Message,
 " ",
 e.StackTrace
 }),e);
 }
 }
 }

 这两个函数最重要，它们在代码中是成对出现的。下面就说说它们在项目中的应用。

 事件的监听与分发在游戏中是如何使用的？下面通过案例给大家介绍一下，首先在代码中加入监听事件，事例代码如下：

 void Start()
 {
 CEventDispatcher.GetInstance().AddEventListener(CEventType.NEXT_BATTALE_START, StartKongxi);
 CEventDispatcher.GetInstance().AddEventListener(CEventType.GAME_WIN, StopKongxi);
 CEventDispatcher.GetInstance().AddEventListener(CEventType.GAME_OVER, StopKongxi);
 }

 粗体部分是加入了监听事件，有监听的类型和监听需要触发的函数，如果需要触发该函数，需要去调用事件的分发函数，代码如下：

CEventDispatcher.GetInstance().DispatchEvent(newCBaseEvent(CEventType.NEXT_BATTALE_START, this));

 这样就会触发监听事件的StartKongxi函数。如果需要移除该监听事件，调用函数如下所示。

void OnDestroy()
 {
 CEventDispatcher.GetInstance().RemoveEventListener(CEventType.NEXT_BATTALE_START, StartKongxi);
 CEventDispatcher.GetInstance().RemoveEventListener(CEventType.GAME_WIN, StopKongxi);
 CEventDispatcher.GetInstance().RemoveEventListener(CEventType.GAME_OVER, StopKongxi);
 }

 以上就是事件监听的使用案例。其实设计事件的监听和分发功能主要是为了模块之间解耦合以及逻辑判断使用的。在游戏逻辑开发中还是很方便的，当然实现方式有很多种，只要满足条件的都可以称为事件机制。下一章将介绍在网络游戏开发中使用非常广泛的消息序列化和反序列化工具——Protobuf。

 3.3　小结

 我以前做事件系统时主要使用的还是委托，扩展起来比较麻烦，每一个回调都要重新封装一个函数。最初的事件机制是应用在服务器上发送消息给客户端，客户端监听服务器发送给客户端的消息，使用起来非常方便，扩展也方便。后期又把它应用到了客户端自己的事件监听上，其实它就是把委托封装了一下，将事件的监听函数存放到了表中。掌握事件监听原理，再将其应用到游戏中，这样你才能真正掌握事件监听机制。

 第4章

 Protobuf在游戏中运用

 Protobuf全称是Protocol Buffers，它是一种轻便高效的结构化数据存储格式，可以用于结构化数据串行化，很适合做数据存储或RPC数据交换格式。Protobuf可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式，目前提供了C++、Java、Python、C#等多种语言的 API。Protobuf是Google开源的序列化和反序列化工具，主要用于网络游戏的消息结构体定义上。相对于XML文件和Json文件，它的性能更好，效率更高。网站 http://code. google.com/p/protobuf/downloads/list上可以下载Protobuf的源代码，它的文件格式以.proto为扩展名。为了便于大家更好的理解其使用原理，下面就通过结合案例的方式给大家讲解。

 4.1　Protobuf消息结构体定义

 使用Protobuf定义消息结构体时首先要明白其语法结构。Protobuf定义的消息由至少一个字段组合而成，类似于C语言中的结构，每个字段都有一定的格式，限定修饰required、optional、repeated三个修饰符。

 	 required修饰符表示一个必须字段。必须相对于发送方，在发送消息之前必须设置该字段的值，对于接收方，必须能够识别该字段的意思。发送之前没有设置required字段或者无法识别required字段都会引发编解码异常，导致消息被丢弃。

 	 optional修饰符表示一个可选字段。可选相对于发送方，在发送消息时，可以有选择性的设置或者不设置该字段的值。对于接收方，如果能够识别可选字段就进行相应的处理，如果无法识别，则忽略该字段，消息中的其他字段正常处理。由于optional字段的特性，很多接口在升级版本中都把后来添加的字段统一设置为optional字段，这样老的版本无须升级程序也可以与新的软件进行通信，只不过新的字段无法识别而已，因为并不是每个节点都需要新的功能，因此可以做到按需升级和平滑过渡。

 	 repeated表示该字段可以包含0～N个元素。其特性和optional一样，但是每一次可以包含多个值。它可以看作是在传递一个数组的值或者List列表数值。开发网络游戏时，经常会定义消息结构体，这些消息结构体在客户端和服务器中都会用到，所以只需要定义一套就可以了。现在移动端大部分用户都在使用Unity引擎开发，所以这些结构体需要转成C#语言。下面从结构体定义开始讲起。

 4.2　编写Protobuf结构体

 网络消息的定义通常会使用Json文件、二进制文件或者自定义结构体。现在使用Protobuf定义消息结构体的公司越来越多，它逐渐成为消息结构体定义的主流，这也要感谢Google提供了一个开源的序列化和反序列化工具。本节以实际项目开发的案例给大家介绍一下网络消息结构体的定义，任何大型网络游戏都有角色的定义，因此首先从角色的定义说起。角色消息包括很多的属性，定义结构体如下所示，其中message是结构体的修饰符。

//角色信息结构
message msgcharinfo
{
 optional uint32 uaid = 1; //用户ID
 optional uint32 charid = 2; //角色ID
 optional uint32 kind = 3; //角色种类
 optional string name = 4; //角色名字
 optional string head = 5; //头像ID
 optional uint32 level = 6; //角色等级
 optional uint32 exp = 7; //角色经验
 optional uint32 phypower = 8; //物理攻击
 optional uint32 leadership = 9; //领导标记
 optional uint32 friendnum = 10; //朋友数量
 optional uint32 gamecoin = 11; //游戏货币
 optional uint32 diamond = 12; //钻石数量
};

 以上是网络游戏中完整的角色定义，包括用户id、游戏中角色id等信息。它存放的文件扩展名为.proto。结构体中各项的修饰都是optional，也就是可选项，可以不用赋值。protobuf自身定义的文件是文本文件，如果将该文件直接放到Unity工程中，Unity是不会识别的，这就需要将其转成Unity可识别的脚本C#文件。再举一个枚举定义的例子，代码如下所示。

//初始化角色奖励信息
enum enumGetCharRewardResult
{
 Success = 0; //成功获取角色
 SystemError = 1; //系统错误
 NewChar = 2; //创建新角色奖励信息
};

 该结构体是以enum修饰的枚举类型，里面有三项，枚举定义和C++或者Java定义类似，枚举定义的内部成员不需要任何符号修饰。假设以上内容是common.proto文件定义的，下面我们再定义一个proto文件，如下所示。

package clientmsg;
import "common.proto";
message C2SNameRepetition
{
 optional msgcharinfo charinfo = 1; //创建角色
 optional uint32 mapid = 2;
 optional uint32 cityid = 3;
};

 给大家解释一下代码。第一行package clientmsg;表示的是模块的封装，其含义类似C++或者C#的namespace命名空间。第二行import "common.proto";表示的是引用该文件，目的是需要用到该文件已定义的结构体，例如，message C2SNameRepetition定义的内容中的语句optional msgcharinfo charinfo = 1;引用的是common.proto文件中已定义的msgcharinfo的结构体，Protobuf支持这种引用关系，从中可以看出Protobuf语言也是比较灵活的，文件与文件之间是可以互相引用的，接下来开始介绍转换工具的制作。

 4.3　Protobuf转换工具制作

 定义好了proto文件后，如果直接放到Unity中，它只能被作为文本文件，这不是开发者想要的，因为要在程序中使用定义好的结构体，需要一个能将其转换成C#脚本文件的工具。下面告诉大家制作该工具需要做哪些工作。制作工具需要的库文件可以在网上下载到，就是已编译好的库工程，主要内容如图4-1所示。

 [image:]
 图4-1　工具库目录

 接下来需要写一个批处理文件执行proto批量转换操作。假设上述库文件是在文件路径：3Party\protobuf-net\net下面，制作的工具文件的扩展名为.bat，批处理文件完整内容如下所示。

@echo off
set tool=..\3Party\protobuf-net~~~et

rem ===
rem Support
set proto=common.proto
%tool%\protogen.exe -i:%proto% -o:%proto%.cs -q

set proto=login.proto
%tool%\protogen.exe -i:%proto% -o:%proto%.cs -q

set proto=begingame.proto
%tool%\protogen.exe -i:%proto% -o:%proto%.cs -q
pause

 其中语句set tool=..\3Party\protobuf-net\net表示的是库文件所在的目录；set proto=common. proto表示的是要转换的proto文件名字；%tool%\protogen.exe-i:%proto%-o:%proto%.cs-q表示的是调用上述目录下的库，将common.proto转化成common.proto.cs文件，依此类推。因为我们定义的commo.cs是公用的文件，下面的文件都会引用到该文件的内容，同时把proto文件复制到与扩展名为.bat相同的文件夹下面。其执行的效果如图4-2所示。

 [image:]
 图4-2　转换文件示意图

 make-protobuf.bat就是执行的批处理程序，执行的结果就是生成对应的cs文件，然后将cs文件拖放到Unity的目录下面。以login.proto.cs文件为例，生成的cs文件内容如图4-3所示。

 [image:]
 图4-3　转成cs文件示意图

 由于篇幅所限，只截取一部分内容，第一行表示的是引用common，下面是命名空间以及类声明。眼尖的读者可能注意到了一个细节就是类前面的修饰符partial，它属于一个局部类型，局部类型允许我们将一个类、结构或接口分成几个部分，分别实现在几个不同的cs文件中。给大家普及一下partial的基础知识，一是类型特别大，不宜放在一个文件中实现；二是一个类型中的一部分代码为自动化工具生成的代码，不宜与我们自己编写的代码混合在一起；三是需要多人合作编写一个类。这几种情况适用于partial修饰。接下来介绍一下如何在Unity中使用。

 4.4　Protobuf文件在Unity中的运用

 在Unity中使用定义的Protobuf文件，首先需要把protobuf-net的源文件放到Unity目录下，源文件的下载地址是：https://github.com/mgravell/protobuf-net/tree/master/protobuf-net，使用源文件的目的是为了实现Protobuf在Android和iOS平台同时使用，代码可以直接在Google提供的官网上下载，拖放到Unity中的效果如图4-4所示。

 [image:]
 图4-4　Protobuf库源文件

 这些前期工作完成后就可以直接调用Protobuf源代码中的库函数进行序列化和反序列化。下面将生成的cs脚本文件拖放到Unity中，效果如图4-5所示。

 [image:]
 图4-5　生成的Protobuf的cs代码

 接下来介绍一下如何在Unity中使用它。在使用定义好的结构体时，需要在文件中加入引用头文件的using clientmsg，然后在函数中首先new一个对象，如下所示。

clientmsg.c2s_login msg = new clientmsg.c2s_login();

 然后对结构体填充数值，如下所示。

 msg.name = Global.userInputName;
 msg.pwd = Global.password;
 messageContentLen += msg.name.Length;
 messageContentLen += msg.pwd.Length;

 最后可以将结构体发送到服务器SendProtoBufMsg(msg, awnet);上，这样整个Protobuf文件的使用就结束了，希望对大家有所帮助。

 4.5　小结

 Protobuf是Google开源的，它被用于序列化和反序列化。以前定义消息结构时，采用的是自定义结构体，扩展起来非常麻烦，有时服务器改动了，客户端没改动过，经常会导致各种问题。后期使用了Protobuf彻底解决了这个问题，服务器只需要定义一份消息文件即可。Protobuf提供了转化成不同语言的工具，比如可以转化成C++、C#、Java等。Protobuf底层已经实现了序列化反序列化接口，使用时只需调用，无须自己实现。

 第5章

 游戏中的文本文件加密

 所有的游戏开发都离不开文本文件的加载读取，文本文件主要是方便策划随时根据游戏调整数值。首先策划要根据游戏设计基本的数值，游戏都是采用数值驱动的，策划的数值体现在文本文件上。游戏的文本文件格式非常多，游戏开发使用的文件类型有：XML文件、Json文件、二进制文件、csv文件以及自定义格式文件等。文本文件的作用是方便策划配置，随时修改游戏数值。本章介绍的是对csv文件的加密和读取，告诉读者如何使用程序代码封装加载和读取文本文件的接口。文本文件的加载流程如图5-1所示。

 [image:]
 图5-1　文件加密流程

 为了防止游戏开发使用的文本文件被破解，要将其加密压缩。操作步骤：首先运行编辑器把所有的配置文件压缩到zip文件中，再将压缩后的文件上传到资源服务器，客户端运行时通过文本文件的对比把版本高的加密压缩文件下载到本地，客户端在程序中进行解压缩，读取文本文件到内存中存储，程序根据提供的接口从内存中取出数据使用。以上就是整个文本文件加载的思路，接下来看看配置文件的文本格式。该技术已经在游戏产品开发中运用并且已上线运营，下面给大家看看csv文件格式。

 5.1　配置文件格式

 csv文件是excel表格转化过来的文本文件，操作方式非常简单，将excel另存为csv格式就完成了从excel到csv的转化，这就是程序需要的文件。如果将其直接拖到Unity工程中是不可以的，需要将其扩展名csv改成txt格式。最终的csv文件格式如下所示。

Id,Category,PropId,PropName,CurrencyType,Price,UpgradePrice
1_1,1,1,蛮族,1,3300,0
1_2,1,2,泰坦,2,2500,0
1_3,1,3,兽王,2,396000,0
1_4,1,4,浪人,1,2640,0
1_5,1,5,零式,2,369600,0
1_6,1,6,侍魂,1,2970,0
1_7,1,7,执政官,1,3300,0
1_8,1,8,天启,1,3300,0

 文件第一行是表格的结构属性，结构属性下面是对应的各个字段值，各个字段值之间用逗号分隔开，便于文件加载时区分不同的字段，非常方便。字段了解清楚了，接下来我们封装文件加载接口。

 5.2　文件加载接口

 程序需要封装接口实现csv文件加载读取。在这里由于文本文件的内容是常驻内存的，所以采用的是static静态类的实现方式，网上也有很多关于文本文件的加载，在这里我封装了一套适用于游戏的接口。完整的代码如下所示。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System;
using System.IO;
using System.Reflection;
using System.Linq;
///作用：文件读取、加载
///Author:Jxw
///Time:2015/10/22

#if UNITY_EDITOR
#pragma warning disable 0649 //检测到无法访问的代码
#endif
namespace BIEFramework.Manager {

 public static class FileManager {
 private static bool m_bInitAssetBundle;

 //静态数据
 private static List<ArmorInfo> armorInfoList = new List<ArmorInfo>();
 private static List<BumperInfo> bumperInfoList = new List<BumperInfo>();
 private static List<CarInfo> carInfoList = new List<CarInfo>();
 private static List<CarSkinInfo> carskinInfoList = new List<CarSkinInfo>();
 private static List<NitroInfo> nitroInfoList = new List<NitroInfo>();
 private static List<PerformanceInfo> performanceInfoList = new List<PerformanceI nfo>();
 private static List<WeaponInfo> weaponInfoList = new List<WeaponInfo>();
 private static List<GuideGirlInfo> guideGirlInfoList = new List<GuideGirlInfo>();
 private static List<SkillBaseInfo> skillBaseInfoList = new List<SkillBaseInfo>();
 private static List<SkillModel> skillModelList=new List<SkillModel>();
 private static List<SkillInfo> skillInfoList = new List<SkillInfo>();
 private static List<NPCInfo> npcInfoList = new List<NPCInfo>();
 private static List<DefaultPlayerInfo> defaultPlayerInfoList = new List<DefaultP layerInfo>();
 private static List<MapInfo> mapInfoList = new List<MapInfo>();
 private static List<TaskInfo> taskInfoList = new List<TaskInfo>();
 private static List<PropInfo> propInfoList = new List<PropInfo>();
 private static List<DailyReward> dailyRewardList = new List<DailyReward>();
 private static List<GoodInfo> goodList = new List<GoodInfo>();
 private static List<DailyTask> dailyTaskList = new List<DailyTask>();
 private static List<PopupInfo> popupInfolList = new List<PopupInfo>();
 //数据文件位置
 public const string dataFolder = "/data/"; private static bool isDataInit = false;
 public static void Init() {
 if (isDataInit) {
 return;
 }
 isDataInit = true;
 InitBundle();
 }

 public static void InitBundle() {
 if (!m_bInitAssetBundle) {
 m_bInitAssetBundle = true;
 //解释文件函数调用
 ParserFromTxtFile<ArmorInfo>(armorInfoList);
 ParserFromTxtFile<BumperInfo>(bumperInfoList);
 ParserFromTxtFile<CarInfo>(carInfoList);
 ParserFromTxtFile<CarSkinInfo>(carskinInfoList);
 ParserFromTxtFile<NitroInfo>(nitroInfoList);
 ParserFromTxtFile<PerformanceInfo>(performanceInfoList);
 ParserFromTxtFile<WeaponInfo>(weaponInfoList);
 ParserFromTxtFile<GuideGirlInfo>(guideGirlInfoList);
 ParserFromTxtFile<SkillModel>(skillModelList);

 ParserFromTxtFile<SkillInfo>(skillInfoList);
 ParserFromTxtFile<MapInfo>(mapInfoList);
 ParserFromTxtFile<TaskInfo>(taskInfoList);
 ParserFromTxtFile<NPCInfo>(npcInfoList);
 ParserFromTxtFile<DefaultPlayerInfo>(defaultPlayerInfoList);
 ParserFromTxtFile<PropInfo>(propInfoList);
 ParserFromTxtFile<GoodInfo>(goodList);
 ParserFromTxtFile<DailyReward>(dailyRewardList);
 ParserFromTxtFile<DailyTask>(dailyTaskList);
 ParserFromTxtFile<PopupInfo>(popupInfolList);
}

 public static void ParserFromTxtFile<T>(List<T> list, bool bRefResource = false) {
 string asset = null;

 //获取文件路径
 string file = ((DataPathAttribute)Attribute.GetCustomAttribute(typeof(T), ty peof(DataPathAttribute))).fiePath;

 if (bRefResource) {
 asset = ((TextAsset)Resources.Load(file, typeof(TextAsset))).text;
 } else {
 asset = File.ReadAllText(Util.DataPath + file+".txt");
 }

 StringReader reader = null;

 try {
 bool isHeadLine = true;
 string[] headLine = null;
 string stext = string.Empty;
 reader = new StringReader(asset);
 while ((stext = reader.ReadLine()) != null) {
 if (isHeadLine) {
 headLine = stext.Split(',');
 isHeadLine = false;
 } else {
 string[] data = stext.Split(',');
 list.Add(CreateDataModule<T>(headLine.ToList(), data));
 }
 }
 } catch (Exception exception) {
 Debug.Log("file:" + file + ",msg:" + exception.Message);
 } finally {
 if (reader != null) {
 reader.Close();
 }

 }
 }

 private static T CreateDataModule<T>(List<string> headLine, string[] data) {
 T result = Activator.CreateInstance<T>();
 FieldInfo[] fis = typeof(T).GetFields(BindingFlags.Public | BindingFlags.Ins tance);
 foreach (FieldInfo fi in fis) {
 string column = headLine.Where(tempstr => tempstr == fi.Name).FirstOrDef ault();
 if (!string.IsNullOrEmpty(column)) {
 string baseValue = data[headLine.IndexOf(column)];
 object setValueObj = null;
 Type setValueType = fi.FieldType;
 if (setValueType.Equals(typeof(short))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? (short)0 : Convert.ToInt16(baseValue);
 } else if (setValueType.Equals(typeof(int))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? 0 : Conve rt.ToInt32(baseValue);
 } else if (setValueType.Equals(typeof(long))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? 0 : Conve rt.ToInt64(baseValue);
 } else if (setValueType.Equals(typeof(float))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? 0 : Conve rt.ToSingle(baseValue);
 } else if (setValueType.Equals(typeof(double))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? 0 : Conve rt.ToDouble(baseValue);
 } else if (setValueType.Equals(typeof(bool))) {
 setValueObj = string.IsNullOrEmpty(baseValue.Trim()) ? false : C onvert.ToBoolean(baseValue);
 } else if (setValueType.Equals(typeof(byte))) {
 setValueObj = Convert.ToByte(baseValue);
 } else {
 setValueObj = baseValue;
 }
 fi.SetValue(result, setValueObj);
 }
 }
 return result;
 }
 public static ArmorInfo FindArmorInfoFromId(int id) {
 ArmorInfo data = null;
 data = armorInfoList.Find(x => x.Id == id);
 if (data == null) {
 Debugger.Log("Error : Not Found In ArmorInfo. ID :" + id);
 }
 return data;
 }

 public static List<ArmorInfo> FindarmorInfoList() {
 return armorInfoList;
 }
///<summary>
///注释，各个数据对应的文件
///</summary>
[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public class DataPathAttribute : Attribute {
 public string fiePath { get; set; }
 public DataPathAttribute(string _fiePath) {
 fiePath = _fiePath;
 }
}

 下面把代码的编写思路给读者理顺一下。加载文本文件，首先声明关于文本文件的结构体列表，文本文件的行表示的就是一个结构体，可以根据行的属性定义数据文件的结构体，根据表的结构体定义用于存储文本文件List表，列表中的结构体会在下面给大家介绍，文件中声明的语句如下：

 private static List<ArmorInfo> armorInfoList = new List<ArmorInfo>();
 private static List<BumperInfo> bumperInfoList = new List<BumperInfo>();
 private static List<CarInfo> carInfoList = new List<CarInfo>();
 private static List<CarSkinInfo> carskinInfoList = new List<CarSkinInfo>();

 文件存储的列表定义好了，接下来就是读取文件，解释文件，调用函数。

 public static void InitBundle()

 在InitBundle()函数中调用了解释文本文件的函数。

 ParserFromTxtFile<ArmorInfo>(armorInfoList);
 ParserFromTxtFile函数的作用是将加载到的配置文件的内容存储到已定义好的列表中。
 ParserFromTxtFile函数采用了模版的定义方式内容如下所示。
 public static void ParserFromTxtFile<T>(List<T> list, bool bRefResource = false) {
 string asset = null;

 //获取文件路径
 string file = ((DataPathAttribute)Attribute.GetCustomAttribute(typeof(T), ty peof(DataPathAttribute))).fiePath;

 if (bRefResource) {
 asset = ((TextAsset)Resources.Load(file, typeof(TextAsset))).text;
 } else {
 asset = File.ReadAllText(Util.DataPath + file+".txt");
 }

 StringReader reader = null;

 try {
 bool isHeadLine = true;
 string[] headLine = null;
 string stext = string.Empty;
 reader = new StringReader(asset);
 while ((stext = reader.ReadLine()) != null) {
 if (isHeadLine) {
 headLine = stext.Split(',');
 isHeadLine = false;
 } else {
 string[] data = stext.Split(',');
 list.Add(CreateDataModule<T>(headLine.ToList(), data));
 }
 }
 } catch (Exception exception) {
 Debug.Log("file:" + file + ",msg:" + exception.Message);
 } finally {
 if (reader != null) {
 reader.Close();
 }

 }
 }

 这个函数的作用就是加载并解释csv文件的代码，采用的也是一行一行的读取方式。

 下面是文件结构体的定义。

public class CombatInfo {
#region 武器数据模型
[System.Serializable]
[DataPath(FileManager.dataFolder + "weapon")]
public class WeaponInfo {
 public int Id;
 public int Type;
 public string Name;
 public string Description;
 public string Resources;
 public string Quality;
 public int Attack;
 public int UpgradeAttack;
 public int Magazine;
 public int Range;
 public int Speed;
 public float Rateoffire;
}
#endregion

#region 保险杠数据模型
[System.Serializable]
[DataPath(FileManager.dataFolder + "bumper")]
public class BumperInfo {
 public int Id;
 public string Name;
 public string Description;
 public string Resources;
 public int Damage;
 public int UpgradeDamage;
 public int Defence;
 public int UpgradeDefence;
 public int ParryHurt;
}

#endregion
#region 装甲数据模型
[System.Serializable]
[DataPath(FileManager.dataFolder + "armor")]
public class ArmorInfo {
 public int Id;
 public string Name;
 public string Description;
 public string Resources;
 public int Defence;
 public int UpgradeDefence;
}

#endregion

#region shop数据模型
[DataPath(FileManager.dataFolder+"shop")]
public class GoodInfo{
 public string Id;
 public string Category;
 public string PropId;
 public string PropName;
 public int CurrencyType;
 public string Price;
 public float UpgradePrice;
}
#endregion

#region 汽车数据模型
[DataPath(FileManager.dataFolder + "car")]
public class CarInfo {
 public int Id;
 public string Name;
 public string Description;
 public string Templat;
 public string Quality;
 public string Resources;
 public int Control;
 public int MaxRpm;
 public int Tire;
 public float TireRadius;
 public int Engine;
 public int Turbine;
 public int Drivetrain;
 public float DrivetrainRatio;
 public int Nitrous;
 public int SkinId;
 public string CarSkin;

 public int[] CarSkinIds {
 get {
 string[] strs = CarSkin.Split(';');
 int[] result = new int[strs.Length];
 for (int i = 0; i < strs.Length; i++) {
 result[i] = int.Parse(strs[i]);
 }
 return result;
 }
 }
 public int WheelSkin;
 public int HP;
 public int NPCHP;
}
#endregion
[DataPath(FileManager.dataFolder + "performance")]
public class PerformanceInfo {
 public int Id;
 public int Type;
 public string Name;
 public string Description;
 public string Resources;
 public int AddMaxRpm;
 public string Resources2;
 public string Resources3;
}

 语句[DataPath(FileManager.dataFolder + "weapon")]表示的是文本文件所在路径， FileManager.dataFolder可以修改成手机端的存储地址，路径下面是结构体的声明，在使用时可以直接通过FileManager调用已经封装好的接口即可实现，比如List<ArmorInfo>=FileManager. FindarmorInfoList()可以获取整个文件的列表，也可以通过其Id获取到某一列的值，再比如语句ArmorInfo info=FileManager.FindArmorInfoFromId(id)可以获取到某一行的值，逻辑程序调用非常方便，文本文件加载读取完成。补充一下，DataPath的路径定义是根据已定义的函数实现的，如下所示。

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false, Inherited = false)]
public class DataPathAttribute : Attribute {
 public string fiePath { get; set; }
 public DataPathAttribute(string _fiePath) {
 fiePath = _fiePath;
 }

 接下来我们考虑一下安全问题，也就是文本文件加密。

 5.3　文本文件加密算法及应用

 移动端游戏经常被一些玩家破解成白包，但是为了安全性，开发者还是需要使用算法对文本文件加密。加密的算法非常多，比如通常使用的是MD5算法、OBFS算法和SHA512算法等。由于MD5算法经常使用，网上也有现成的代码，所以本节略过，直接讲OBFS算法和SHA512算法。为了便于大家理解，先把加密算法代码奉上。

 //OBFS加密算法
 private static string OBFS(string str)
 {
 int length = str.Length;
 var array = new char[length];
 for (int i = 0; i < array.Length; i++)
 {
 char c = str[i];
 var b = (byte)(c ^ length - i);
 var b2 = (byte)((c >> 8) ^ i);
 array[i] = (char)(b2 << 8 | b);
 }
 return new string(array);
 }

 //SHA512加密算法
 public static string GetSHA512Password(string password)
 {
 byte[] bytes = Encoding.UTF7.GetBytes(password);
 byte[] result;
 SHA512 shaM = new SHA512Managed();
 result = shaM.ComputeHash(bytes);
 StringBuilder sb = new StringBuilder();
 foreach (byte num in result)
 {
 sb.AppendFormat("{0:x2}", num);
 }
 return sb.ToString();
 }

 以上两个算法实现了文本文件的加密，函数的参数是开发者自己定义的字符串，然后在该字符串的基础上通过算法加密生成新的字符串用于压缩文件加密。下面列出配置文件，并且调用OBFS函数或者SHA512函数对文件进行加密，返回的是经过加密的字符串，同时调用函数SaveConfigXMLTOZip对文件进行压缩加密。对应的函数语句如下所示。

 private const string configurationFile = "config.txt";
 private const string localizationFile = "translations.txt";
 private /*const*/ string configurationZipPwd = OBFS("~Ũ;oٷळ");
 private /*const*/ string configurationZipPwd = GetSHA512Password("ٷ※▊ぷ┩▓ㄘЖ╔╕Ψ≮≯ゆǘйξζ");
#if UNITY_EDITOR
 protected void SaveConfigXMLToZip()
 {
 using (ZipFile zipFile = new ZipFile(Encoding.UTF8))
 {
 zipFile.Password = configurationZipPwd;
 zipFile.AddEntry(configurationFile, configuration.bytes);
 zipFile.AddEntry(localizationFile, localization.bytes);
 string zipPath = Path.Combine(Application.persistentDataPath, configurationZipFile);
 LogTool.Log("Saving configuration in \"" + zipPath + "\"");
 zipFile.Save(zipPath);
 }
 }
#endif

 文件的压缩是在编辑模式下，程序运行时会将文本文件压缩，同时把加密的密码赋值给它。在程序启动时，先把资源服务器加载文件的版本号与本地的版本号对比，决定下载需要的文本文件。

#region Coroutines
 IEnumerator DownloadVersionFile()
 {
 Asserts.Assert(!downloadingVersionFile);
 downloadingVersionFile = true;

 WWW versionLoader = new WWW(configurationZipURL + versionFile + "?nocache=" + Environment.TickCount);

 while (!versionLoader.isDone)
 {
 yield return new WaitForEndOfFrame();
 }

 if (versionLoader.isDone && string.IsNullOrEmpty(versionLoader.error))
 {
 versionString = versionLoader.text;
 }
 else
 versionString = version.text;

 versionLoader.Dispose();

 LogTool.Log("VERSION NUMBER: " + versionString);

 downloadingVersionFile = false;

 PlayerPrefs.SetInt("last_vn", lastVersionNumber);
 }

 先从资源服务器下载文本文件，接下来下载文件的压缩包，函数代码如下所示。

 IEnumerator DownloadZip()
 {
 Asserts.Assert(!downloadingZip);
 downloadingZip = true;
 WWW zipLoader = new WWW(configurationZipURL + configurationZipFile + "?nocache=" + Environment.TickCount);

 while (!zipLoader.isDone)
 {
 if (stopDownloading)
 {
 downloadingZip = false;
 stopDownloading = false;

 LogTool.Log("Download configuration STOPPED!");
 }

 yield return new WaitForEndOfFrame();
 }

 if (zipLoader.isDone && string.IsNullOrEmpty(zipLoader.error))
 {
 LogTool.Log("**** PELLE: DOWNLOADING ZIP COMPLETED! Duration: " + (Time.realtimeSinceStartup - startTime));
 using (FileStream fs = new FileStream(Path.Combine(Application.persistentDataPath, configurationZipFile), FileMode.Create))
 {
 fs.Seek(0, SeekOrigin.Begin);
 fs.Write(zipLoader.bytes, 0, zipLoader.bytes.Length);
 fs.Flush();
 }

 zipLoader.Dispose();

 if (!downloadingZip)
 {
 LogTool.Log("Download configuration OK!");
 yield break;
 }
 else
 LogTool.Log("Download configuration OK, configurations will be loaded from new zip!");
 }
 else
 {
 zipLoader.Dispose();
 downloadingZip = false;
 stopDownloading = false;

 yield break;
 }

 if (!dataLoaded && !stopDownloading)
 this.TryLoadingXMLsFromZip();

 downloadingZip = false;
 stopDownloading = false;
 }

 最后一步就是解压缩文件并且解释文本文件，函数代码如下所示。

 protected void TryLoadingXMLsFromZip()
 {
 string zipPath = Path.Combine(Application.persistentDataPath, configurationZipFile);
 if (!File.Exists(zipPath))
 {
 LogTool.Log("Configuration not found!");
 this.ParseConfigXML(configuration.text, false);
 this.ParseLocalizationXML(localization.text, false);
 return;
 }

 using (ZipFile zipFile = new ZipFile(zipPath, Encoding.UTF8))
 {
 zipFile.Password = configurationZipPwd;

 ZipEntry xmlConfEntry = zipFile[configurationFile],
 xmlLocaleEntry = zipFile[localizationFile];
 if (null == xmlConfEntry || null == xmlLocaleEntry)
 {
 LogTool.Log("Downloaded configuration INVALID!");
 this.ParseConfigXML(configuration.text, false);
 this.ParseLocalizationXML(localization.text, false);
 return;
 }

 using (MemoryStream ms = new MemoryStream())
 {
 xmlConfEntry.Extract(ms);

 string xmlText = Encoding.UTF8.GetString(ms.GetBuffer(), 0, ms.GetBuffer().Length);
 this.ParseConfigXML(xmlText, true);

 ms.Seek(0, SeekOrigin.Begin);
 xmlLocaleEntry.Extract(ms);

 xmlText = Encoding.UTF8.GetString(ms.GetBuffer(), 0, ms.GetBuffer().Length);
 this.ParseLocalizationXML(xmlText, true);
 }
 }
 }

 到这里文本文件加密算法就写完了，文本文件挂接如图5-2所示。

 [image:]
 图5-2　文本文件挂接

 先把加载的脚本文件挂接到对象上，SRData Loader就是程序的加载脚本，这样程序在启动时会从资源服务器下载，然后将其加载到内存中，函数代码如下所示。

 new void Awake()
 {
 SRDataLoader.Instance = this;

#if UNITY_EDITOR && !UNITY_WEBPLAYER
 this.SaveConfigXMLToZip();
#endif
 dataLoaded = false;
 downloadingZip = false;
 stopDownloading = false;

 startTime = Time.realtimeSinceStartup;
 lastVersionNumber = PlayerPrefs.GetInt("last_vn", 0);

 this.TryLoadingXMLsFromZip();

 #elif !UNITY_EDITOR
 if (Application.internetReachability != NetworkReachability.NotReachable)
 {
 this.StartCoroutine(this.DownloadVersionFile());
 this.StartCoroutine(this.DownloadZip());
 }
#endif

 DontDestroyOnLoad(gameObject);
 }

 我们在Awake函数中完成了版本号和版本文件的下载，然后按照程序流程执行解压，读取文本文件操作。

 5.4　小结

 配置文件对于游戏来说是必备的，数据驱动已经成为游戏开发必备的条件。策划会根据游戏的玩法调整游戏中的数据表现，比如玩家与怪物战斗的血量配置、背包物品的属性数据配置、玩家自身的属性数据配置、关卡的难度配置，等等。配置文件的格式非常多，本章主要是介绍了csv的加载读取方式。策划数据表的配置大部分都是excel表格，将它们转成csv格式非常方便。

 第6章

 行为树在游戏中的运用

 以前开发移动端游戏或者网页游戏时，一般使用的AI是A*算法，开发起来相对麻烦，而Unity的行为树插件，非常方便开发者开发游戏AI。本章的重点是告诉开发者如何使用该插件开发游戏。

 行为树的核心部分是有限状态机，在移动端游戏开发中使用广泛。有限状态机主要用于操作游戏中NPC的不同行为，有限状态机也是一种AI行为。行为树一般在什么情况下使用呢？举一个简单的案例说明一下，虚拟场景中的加油站只有一个地方可以加油，停车场有两处可以停车，现在有三辆车，要保证每辆车都要加到油，并且自动回到停车场，这就是一个简单的AI算法。类似这样的案例我们都可以使用行为树来实现此功能。先把案例实现的效果图给大家展现一下，初始状态如图6-1所示。

 [image:]
 图6-1　行为树初始状态

 汽车自身的状态切换可以抢占车位和加油站，效果如图6-2所示。一辆车在停车位，一辆车在加油，另一辆车在加油站旁边等候。

 [image:]
 图6-2　行为树运行效果

 再给大家看一下行为树状态切换，效果如图6-3所示。

 [image:]
 图6-3　行为树状态切换效果

 这样三辆赛车完成了不同状态之间的切换。如果使用代码实现，估计要分多种情况判断，而使用行为树插件非常简单，拖拉几个节点就可以实现该功能。下面把行为树插件的核心内容给大家介绍一下，它是一种界面化操作的行为树方式。

 6.1　行为树插件介绍

 网上关于行为树的使用也很多，在这里主要给大家总结一下插件的组成。该插件主要由四部分组成：Composites、Decorators、Actions、Conditionals，这四种都称之为Task。下面就以游戏中经常使用的节点给大家介绍一下，效果如图6-4所示。

 [image:]
 图6-4　行为树插件节点

 Composites称为“组合节点控制（管理）”，在它下面的若干选项都称为“控制类节点”。

 	 Parallel并行节点。此节点下属所有节点将一起进行，其中某一个执行返回false，则Parallel节点返回false。

 	 Parallel Selector并行选择节点。此节点下属所有节点只要有一个返回success，则Parallel Selector节点返回success，二节点都是并行的，也就是说同时执行所有下属节点。

 	 Random Selector随机选择节点。此节点下属所有节点随机执行，直到其中某一个返回success。

 	 Random Sequence随机选择列队节点。此节点下属所有节点随机执行，直到其中一个返回false。

 	 Selector选择节点。此节点下属所有节点依次执行，直到返回true。

 Decorators下的Repeater为重复节点，此节点可设置该节点下的子节点重复执行的次数。

 Action有三大类，第一类为基础的API；第二类为基本的Monobehavior操作，如Animator、Animation、Behavior等；第三类为辅助API，都是使用反射处理，当然这个大类隐含着性能的损耗要谨慎使用。

 Conditionals用于条件对比，例如“是否为空”“是否是处于某状态”“是否接收到消息”“是否等于某数值”。

 作为行为树组件中最容易理解的Conditionals，在其基本API中大多以 "Is has XXX" 开头。

 以上节点的说明在组件的使用手册中也有介绍，在这里把重点给大家介绍一下。使用者还可以自己开发对应的组件实现自己特定的需求，换句话说，开发者可以扩展该组件完成功能，从下节开始通过案例讲解，将其应用到项目开发里面。

 6.2　案例讲解

 6.1节介绍了行为树插件节点的含义，本节结合案例给大家讲解。通常的游戏开发，比如赛车游戏、射击游戏、休闲类游戏等，都可以使用行为树插件。当然行为树针对的一般是弱联网的游戏，通信协议一般使用HTTP协议。强联网的因为要实时通信所以一般不会使用行为树插件。比如一些NPC赛车自己设计的行为树，如图6-5所示。

 [image:]
 图6-5　行为树设计

 上图中Sequence结点表示的其子结点是顺序执行的，从左到右，依次是先等待3秒，然后等待8−NPC时间/3，接下来再顺序执行Sequence结点。首先判断攻击区域内是否有车，有则攻击。可以在图中的各个节点的注释中明白其含义，结点的参数可以从结点的Inpector中看到，如图6-6所示。

 [image:]
 图6-6　行为树参数设置

 从上面的节点中可知Can Npc Fire节点是不存在的，需要自己编写添加，开发者可以在现有框架的基础上去增加自己定义的组件，代码如下所示。

using UnityEngine;
using BehaviorDesigner.Runtime;
using BehaviorDesigner.Runtime.Tasks;
using RaceFramework;
[TaskCategory("Race")]
public class CanNpcFire : Conditional
{
 [InheritedField]
 public SharedObject ProAIValue;

 float _distanceMin = 100;
 float _distanceMin2 = 200;
 float _angleMin = 22;
 float _trackingAngle = 20;
 Collider _nearestCollider = null;
 BaseRacer _nearestBaseRacer = null;

 Collider trackingCollider1 = null;
 Collider trackingCollider2 = null;
 public override TaskStatus OnUpdate()
 {
 BaseRacer br = ProAIValue.Value as BaseRacer;

 Transform _weaponRPGTrans = null;
 WeaponView leftwpView = br.GetLeftWeaponView();
 if (leftwpView != null && leftwpView.CheckIfTracingCursor()) {
 _weaponRPGTrans = leftwpView.transform;
 }
 WeaponView rightwpView = br.GetRightWeaponView();
 if (rightwpView != null && rightwpView.CheckIfTracingCursor()) {
 _weaponRPGTrans = rightwpView.transform;
 }

 foreach (BaseRacer _inCamerCarController in RacerManager.sInstance.RacerList) {
 float _distance = Vector3.Distance(this.transform.position, _inCamerCarController.transform.position);
 if (_distance < _distanceMin) {

 Vector3 _direction = _inCamerCarController.transform.position - this.transform.position;
 float _angle = Vector3.Angle(this.transform.forward, _direction);
 if (_weaponRPGTrans != null) {
 if (Mathf.Abs(_angle) < _angleMin) {
 _distanceMin = _distance;
 _angleMin = Mathf.Abs(_angle);
 _nearestCollider = _inCamerCarController.CarBodyCollider;
 _nearestBaseRacer = _inCamerCarController;
 }
 }

 if (Mathf.Abs(_angle) < _trackingAngle) {
 _trackingAngle = Mathf.Abs(_angle);
 trackingCollider1 = _inCamerCarController.CarBodyCollider;
 }
 } else if (_distance < _distanceMin2 && _distance >= 100) {

 Vector3 _direction = _inCamerCarController.transform.position - this.transform.position - this.transform.forward * 51.5f;
 float _angle = Vector3.Angle(this.transform.forward, _direction);
 if (Mathf.Abs(_angle) < _trackingAngle * 2) {
 _trackingAngle = Mathf.Abs(_angle);
 trackingCollider2 = _inCamerCarController.CarBodyCollider;
 _distanceMin2 = _distance;
 }
 }
 }
 if (trackingCollider1 != null) {
 return TaskStatus.Success;
 } else {
 return TaskStatus.Failure;
 }
 }
}

 函数实现的是条件节点，所以它要继承Conditional类，上面代码的核心功能主要是在Update中通过距离和角度判断其是否进行射击，它在编辑器中的效果如图6-7所示。

 [image:]
 图6-7　自定义行为树

 在图6-7里面还缺一个结点NPC Fire，它也可以自己实现，组件代码如下所示。

using UnityEngine;
using BehaviorDesigner.Runtime;
using BehaviorDesigner.Runtime.Tasks;
using RaceFramework;
[TaskCategory("Race")]
public class NpcFire : Action
{
 [InheritedField]
 public SharedObject ProAIValue;
 public SharedBool isFireValue;

 WeaponView leftwpView;
 WeaponView rightwpView;
 public override void OnStart()
 {
 ProAI pa = ProAIValue.Value as ProAI;
 leftwpView = pa.GetLeftWeaponView();
 rightwpView = pa.GetRightWeaponView();
 }

 public override TaskStatus OnUpdate()
 {
 if (isFireValue.Value) {
 leftwpView.FireStart();
 rightwpView.FireStart();
 } else {
 leftwpView.FireStop();
 rightwpView.FireStop();
 }
 return TaskStatus.Success;
 }
}

 这个是属于Action动作。在介绍节点时，已经提醒过开发者，行为树太复杂，如果游戏的许多NPC都使用行为树，相对来说比较耗时。自定义实现的效果如图6-8所示。

 [image:]
 图6-8　自定义行为树组件列表

 接下来还有射击结点、Wait结点和停止结点，这些都与它们类似。当然它们是系统自带的，开发者直接拿过来使用就可以了。开发者写比较少的代码就可完成这些行为树的设计，非常方便。再看看赛车行驶的行为树。下面是赛车比赛的行为树，如图6-9所示。

 [image:]
 图6-9　赛车行为树结构

 其实现原理和射击是一样的，这里就不一一说明了，它里面的结点也是自己实现的，比如Use Nitro这个结点，它的代码如下所示。

using UnityEngine;
using BehaviorDesigner.Runtime;
using BehaviorDesigner.Runtime.Tasks;
using RaceFramework;

[TaskCategory("Race")]
public class UseNitro : Action
{
 public SharedBool isUse;
 [InheritedField]
 public SharedObject ProAIValue;
 private ProAI pa;
 public override void OnStart()
 {
 pa = ProAIValue.Value as ProAI;

 }

 public override TaskStatus OnUpdate()
 {
 if (isUse.Value) {
 pa.StartNitro();
 } else {
 pa.StopNitro();
 }
 return TaskStatus.Success;
 }
}

 6.3　小结

 附上完整的代码是希望开发者能够灵活运用行为树解决实际问题，同时也是给开发者一个提示，可以用行为树解决大部分AI逻辑。注意，虽然行为树开发非常方便，但任何事情做起来都要有个度，如果设计非常复杂的行为树也是要消耗CPU和内存的，不能无限制的使用。行为树内部需要进行大量的计算，对CPU是一个不小的损耗。在这里提出行为树的概念是给大家提供一个思路，其实如果我们使用if else 或者switch语句也可以把逻辑实现出来，但是因为行为逻辑要考虑的条件比较多，写起来比较麻烦，所以不建议用行为树构建复杂的行为逻辑。如果由于行为树复杂的逻辑而导致CPU占用过多，从而导致游戏卡顿，再用代码去重写优化就会非常麻烦。

 AI算法在游戏中占有重要地位，可以这么说任何游戏都有自己的AI行为。在Unity中提供了AI行为插件，这样更便于开发者操作，当然任何事情都有度，不能把非常复杂的行为用插件做，行为树消耗CPU，所以在设计需求时要考虑清楚。最后把赛车行为树追击并射击的效果给大家展示一下，如图6-10所示。

 [image:]
 图6-10　赛车行为树追击并射击

 第7章

 残影

 我们使用Unity 3D开发动作类游戏或者RPG游戏时，为了增强战斗效果，经常会使用残影技术，该技术可以使角色的动作更具观赏性，可以使游戏品质更上一个台阶。本章介绍游戏中经常使用的残影技术，提供了从原理到技术实现的完整残影架构系统，方便开发者移植到各种类型的游戏开发中去。下面先给大家展示一下残影实现的效果，如图7-1所示。

 [image:]
 图7-1　残影效果

 3D残影与2D残影技术实现是截然不同的，2D残影的实现可以直接做成序列帧，然后放在程序里播放动画即可，而3D残影需要实现Mesh的克隆。克隆Mesh时需要注意的是残影的每一帧都要去渲染，大家不要担心帧数，在手机上跑没有任何问题，因为它只是生成几个Mesh， Mesh的数量可以控制，Mesh身上的材质渲染也可以通过Shader去改变。它的原理就是在设定的时间内克隆出几个Mesh。残影需要一个淡入淡出效果，需要设置一个消失时间间隔，如果超出规定的时间就会将其破坏掉。残影的运行效果给人的感觉就好像一个人的速度快到只看到影子一样，这种效果在武侠影视剧中经常会看到，它的实现跟以前实现的刀光拖尾原理非常类似。下面开始讲解残影的技术实现。

 7.1　残影的技术实现

 残影实现原理搞清楚了，接下来需要设计代码实现了。首先的问题是克隆出Mesh，这个需要每帧进行，因为在实现残影的过程中，动作是一直播放的，所以实现的残影不是一个统一的动作，这样才更具有观赏性。下面开始代码的编写，代码的名字是 Canying.cs，完整的代码如下所示。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class CanYing : MonoBehaviour {

 public float interval = 0.1f;
 public float lifeCycle = 2.0f;

 float lastCombinedTime = 0.0f;

 MeshFilter[] meshFilters = null;

 MeshRenderer[] meshRenderers = null;

 SkinnedMeshRenderer[] skinedMeshRenderers = null;

 List<GameObject> objs = new List<GameObject>();

 //用于初始化
 void Start ()
 {
 meshFilters = gameObject.GetComponentsInChildren<MeshFilter>();
 skinedMeshRenderers = gameObject.GetComponentsInChildren<SkinnedMeshRenderer>();
 }

 void OnDisable()
 {
 foreach (GameObject go in objs)
 {
 DestroyImmediate(go);
 }
 objs.Clear();
 objs = null;
 }
 //每帧更新
 void Update ()
 {
 if (Time.time - lastCombinedTime > interval)
 {
 lastCombinedTime = Time.time;

 for (int i = 0; skinedMeshRenderers != null && i < skinedMeshRenderers.Length; ++i)
 {
 Mesh mesh = new Mesh();

 skinedMeshRenderers[i].BakeMesh(mesh);

 GameObject go = new GameObject();

 go.hideFlags = HideFlags.HideAndDontSave;
 MeshFilter meshFilter = go.AddComponent<MeshFilter>();
 meshFilter.mesh = mesh;

 MeshRenderer meshRenderer = go.AddComponent<MeshRenderer>();
 meshRenderer.material = skinedMeshRenderers[i].material;

 InitFadeInObj(go, skinedMeshRenderers[i].transform.position,
 skinedMeshRenderers[i].transform.rotation, lifeCycle);
 }
 for (int i = 0; meshFilters != null && i < meshFilters.Length; ++i)
 {
 GameObject go = Instantiate(meshFilters[i].gameObject) as GameObject;
 InitFadeInObj(go, meshFilters[i].transform.position, meshFilters[i].transform.rotation, lifeCycle);
 }
 }
 }

 private void InitFadeInObj(GameObject go, Vector3 position, Quaternion rotation, float lifeCycle)
 {
 go.hideFlags = HideFlags.HideAndDontSave;
 go.transform.position = position;
 go.transform.rotation = rotation;

 FadInOut fi = go.AddComponent<FadInOut>();
 fi.lifeCycle = lifeCycle;
 objs.Add(go);
 }
}

 说一下代码编写的思路，在代码中声明了几个数组变量。

 MeshFilter[] meshFilters = null;
 SkinnedMeshRenderer[] skinedMeshRenderers = null;

 用于存放已有对象子类的meshFilters组件网格和SkinnedMeshRender组件蒙皮网格渲染，这个在Start初始化函数中有对其赋值，函数代码如下所示。

 void Start ()
 {
 meshFilters = gameObject.GetComponentsInChildren<MeshFilter>();
 skinedMeshRenderers = gameObject.GetComponentsInChildren<SkinnedMeshRenderer>();
 }

 残影的生成是在Update函数中，残影是有生命周期的，加了一个时间条件判断语句。

 Time.time - lastCombinedTime > interval

 接下来遍历蒙皮网格渲染组件SkinnedMeshRender，因为残影的生成是根据动作而变化的，每帧都要获取角色动作，遍历skinedMeshRenderers的组件代码如下。

for (int i = 0; skinedMeshRenderers != null && i < skinedMeshRenderers.Length; ++i)
｛｝

 在遍历的过程中要自己创建并生成网格，而且要把对应的网格根据SkinnedMeshRender组件的函数BaekMesh把动作蒙皮实现出来，再通过new GameObject重新生成一个对象，把其对应的组件逐步赋值给它也包括材质，这样就完成了残影的绘制。

 Mesh mesh = new Mesh();
 skinedMeshRenderers[i].BakeMesh(mesh);
 GameObject go = new GameObject();
 go.hideFlags = HideFlags.HideAndDontSave;
 MeshFilter meshFilter = go.AddComponent<MeshFilter>();
 meshFilter.mesh = mesh;
 MeshRenderer meshRenderer = go.AddComponent<MeshRenderer>();
 meshRenderer.material = skinedMeshRenderers[i].material;

 在代码的最后调用了函数：

InitFadeInObj(go, skinedMeshRenderers[i].transform.position,
 skinedMeshRenderers[i].transform.rotation, lifeCycle);

 该函数的主要作用是实现残影的淡入淡出效果，因为角色生成的残影位置和旋转不同，且它们都有自己的生命周期，函数内容如下。

 go.hideFlags = HideFlags.HideAndDontSave;
 go.transform.position = position;
 go.transform.rotation = rotation;

 FadInOut fi = go.AddComponent<FadInOut>();
 fi.lifeCycle = lifeCycle;
 objs.Add(go);

 上面的语句中增加了组件FadInOut用于淡入淡出效果。再把思路总结一下：Update函数的主要作用是每一帧生成MeshFilter，同时捕捉每一帧的动作，实时绘制Mesh。InitFadeInObj函数的主要作用是处理绘制出来的Mesh，并且按照一定的时间间隔将其销毁掉，同时为了表现出好的效果，可以用自己的Shader替换原有角色的Shader。现在把FadInOut脚本代码给大家展示一下。

using UnityEngine;
using System.Collections;

public class FadInOut : MonoBehaviour {

 public float lifeCycle = 2.0f;

 float startTime;
 Material mat = null;

 //用于初始化
 void Start () {
 startTime = Time.time;

 MeshRenderer meshRenderer = GetComponent<MeshRenderer>();
 if (!meshRenderer || !meshRenderer.material)
 {
 base.enabled = false;
 }
 else
 {
 mat = meshRenderer.material;
 ReplaceShader();
 }
 }

 //每帧更新
 void Update () {
 float time = Time.time - startTime;
 if (time > lifeCycle)
 {
 DestroyImmediate(gameObject);
 }
 else
 {
 float remainderTime = lifeCycle - time;
 if (mat)
 {
 Color col = mat.GetColor("_Color");
 col.a = remainderTime;
 mat.SetColor("_Color", col);

 col = mat.GetColor("_OutlineColor");
 col.a = remainderTime;
 mat.SetColor("_OutlineColor", col);
 }
 }
 }
 //替换Shader函数
 private void ReplaceShader()
 {
 if (mat.shader.name.Equals("Custom/Toon/Basic Outline"))
 {
 mat.shader = Shader.Find("Custom/Toon/Basic Outline Replace");
 }
 else if (mat.shader.name.Equals("Custom/Toon/Basic"))
 {
 mat.shader = Shader.Find("Custom/Toon/Basic Replace");
 }
 else
 {
 Debug.LogError("Can't find target shader");
 }
 }
}

 在Start函数中，主要实现的是残影的Shader替换，调用了函数ReplaceShader，该函数的内容如下。

 private void ReplaceShader()
 {
 if (mat.shader.name.Equals("Custom/Toon/Basic Outline"))
 {
 mat.shader = Shader.Find("Custom/Toon/Basic Outline Replace");
 }
 else if (mat.shader.name.Equals("Custom/Toon/Basic"))
 {
 mat.shader = Shader.Find("Custom/Toon/Basic Replace");
 }
 else
 {
 Debug.LogError("Can't find target shader");
 }
 }

 换句话说，它给残影新的材质，在Update函数里面主要处理的是当前角色身上的材质以及淡入淡出效果，在固定的时间内将已经生成的残影Mesh逐步删除掉。使用函数ReplaceShader，主要作用是处理生成的残影Mesh网格，将以前的Shader替换成自己定义的，这样的设计是为了做出不同的残影效果。整个残影的代码介绍完成了，下面通过Demo的方式给大家演示一下。

 7.2　Demo展示

 FadeInOut脚本是在运行时动态加载的，只要将其复制到Unity的目录下面使用即可。接下来需要一个带动作的角色，便于产生残影效果，还要将实现的CanYing.cs脚本挂接到带动作的模型对象上，如图7-2所示。

 [image:]
 图7-2　脚本挂接到动作模型上

 直接单击运行，残影运行效果如图7-3所示。

 [image:]
 图7-3　残影运行效果

 效果非常绚丽，目前该技术已应用到项目开发中，其中残影的效果可以通过参数进行调整，比如残影绘制的时间间隔，残影的材质设置等。第8章介绍另一种技术移动端实时阴影绘制。

 7.3　小结

 残影的实现方式跟动作的刀光拖尾有点类似。前者是根据动作重新塑造一个模型Mesh，后者是根据刀光移动的轨迹描绘出点的坐标，将贴图附到这些点连成的面片上，刀光舞动产生的点会有淡入淡出效果，这点与残影很像。残影的实现是根据动作生成多个Mesh，然后对Mesh进行材质渲染，产生淡入淡出的效果，这样残影就绘制出来了。

 第8章

 移动端实时阴影绘制

 实时阴影技术对于游戏开发来说是检验引擎功能的重要指标之一。在当前硬件已经满足开发的情况下，开发者要做的事情就是使用算法实现更好的渲染效果，用于提升游戏品质。移动端实时阴影绘制一直是比较重要的，由于Unity自身的原因，开发者只能在PC端实现实时阴影绘制。目前在移动端还无法直接使用Unity的接口来实现实时阴影，作为开发者也只能通过其他方式实现。在Asset Store里面有一个Fast Shadow Receiver插件，它的实现原理是使用Unity自带的Projector组件。它的实现方式分为两种，一种是通过一张有Alpha通道的贴图，另一种是实时绘制的。它的处理方式分为接收层和阴影绘制层，即把要投影的区域作为接收层，对要投影的物体进行绘制作为绘制层，效果如图8-1所示。

 [image:]
 图8-1　插件阴影效果

 图8-1的实时阴影实现方式是通过Projector及一张贴图组成的，组件参数的设置使用可查看下图8-2所示。

 [image:]
 图8-2　组件参数设置效果图

 但是这组件并不利于开发手游，因为手游的场景比较大，不规则的物件也非常多，角色也属于不规则的物体，使用Projector实现的效果并不是特别好，相对来说它对内存和CPU的消耗比较大，而且接收层比较大也不利于在移动端使用。考虑到移动端硬件的限制，本章实现的移动端实时阴影采用的是RenderTexture。接下来我们说说其实现原理。

 8.1　移动端实时阴影实现原理

 考虑到硬件的限制，移动端实时阴影绘制主要用于主要角色绘制，场景的阴影渲染采用LightMap技术将其烘焙到地面上就可以了。换句话说，本节实现的实时阴影主要是针对角色的，不是对场景的。移动端实时阴影绘制的实现，首先需要一个3D摄像机，将这个摄像机设置成正交摄像机，并将其放置到角色的头顶上，它的主要作用是渲染每一帧需要加阴影的物体。渲染物体时需要一个接收面，用于接收实时阴影，为了优化效率，在阴影的接收面加一个Quad四边形。具体实现方式如图8-3所示。

 [image:]
 图8-3　Unity对象实时阴影设置

 设置的接收面是一个Quad四边形面片，所以设计场景时，不要设置比较陡的斜坡，这样不利于阴影的展示，这个也是它的一个缺点，当然坡度较小时没有任何问题。这个已在项目中进行过验证，下面谈谈它的技术实现。

 8.2　技术实现

 实时阴影的前期工作已完成，接下来是实现代码的编写工作。实现原理就是把角色头顶的摄像机捕捉到的每一帧渲染到设置的面片上。首先需要把一个物体摆放到场景中，然后在角色的下面新建一个面片，同时在物体的上方设置一个摄像机，效果如图8-4所示。

 [image:]
 图8-4　实时阴影相摄像机和面片设置效果图

 在这里有两个地方需要注意一下：一个是需要自己建一个RenderTexture，然后将其赋值给Camera里面的参数RenderTexture项；另一个是Quad面需要挂接一个Shader，选择的是Transparent/Diffuse Shader可以渲染有Alpha通道的材质，这就要求Quad四边形的材质必须有Alpha通道，这样角色才可以渲染到Quad四边形上，从而把阴影渲染绘制出来。当然还需要调整摄像机的角度，还有其ViewPort视口的值，下面把操作步骤给大家一一讲解。

 首先在模型的子节点处新建一个GameObject，将对象的名字改成Shadow，然后在其下面建两个子节点，一个是Camera，另一个是Quad四边形plane，效果如图8-5所示。

 [image:]
 图8-5　阴影的组成部分

 编写一个脚本用于RenderTexture的渲染，完整的代码如下所示。

using UnityEngine;
using System.Collections;

public class ShadowScript : MonoBehaviour {

 public Transform obj;

 private GameObject plane;
 private RenderTexture mTex = null;

 void Start()
 {
 plane = transform.FindChild("Plane").gameObject;
 Camera ShadowCamera = transform.FindChild("Camera").GetComponent<Camera>();

 if (!obj)
 obj = transform.parent;
 mTex = new RenderTexture(256, 256, 0);
 mTex.name = Random.Range(0, 100).ToString();
 ShadowCamera.targetTexture = mTex;
 }

 void Update()
 {
 plane.renderer.material.mainTexture = mTex;
 }
}

 设置的RenderTexture效果的代码所示。

 mTex = new RenderTexture(256, 256, 0);
 mTex.name = Random.Range(0, 100).ToString();
 ShadowCamera.targetTexture = mTex;

 接下来介绍一下脚本的设计思路。在Start函数中new一个RenderTexture用于存放实时绘制的阴影，同时会将其赋值给ShadowCamera.targetTexture，在Update函数中每帧实时绘制，这个脚本是挂接在上面的Shadow对象上的，效果如图8-6所示。

 [image:]
 图8-6　阴影的脚本挂接效果图

 同时设置一下对象的Layer用于确定渲染的角色，这里设置了aaa。然后调整Camera的大小和角度，效果如图8-7所示。

 [image:]
 图8-7　两个角色阴影设置

 上图的参数设置一目了然，非常清晰。接下来设置Quad四边形，将它摆放在角色的正中，这个四边形面片是要随着角色移动的，所以要将它挂接到骨骼上，效果如图8-8所示。

 [image:]
 图8-8　设置接收阴影

 整个实时阴影的前期工作就完成了，接下来运行程序看看效果，我们这里摆放了两个角色，运行效果如图8-9所示。

 [image:]
 图8-9　运行效果

 在这里注意一个问题，如果角色的材质含有Alpha通道该如何处理呢？如果还使用以前的Shader渲染，二者都有Apha通道在混合时就会出现问题。网上也有很多朋友咨询过这个问题，接下来我把Shader的代码给大家分享一下，并解答这个问题。

 8.3　透明材质实时阴影处理

 透明材质纹理渲染在游戏开发中经常会遇到，很多程序员在网上也问过我这个问题，现在利用本节给大家解答一下，主要的原因是要渲染的平面本身就是将其设置成有Alpha通道的平面。如果角色的材质本身再带有Alpha通道，就会使两个通道混合，导致渲染的实时阴影出现问题，在这里就不演示了，大家有兴趣可以自己测试一下，下面给出解决方案，主要是解决对颜色的处理，比如把某些不需要的颜色裁剪掉，下面是它的代码。

Shader "Custom/Transparent/Gray" {
Properties {
 _Color ("Main Color", Color) = (1, 1, 1, 1)
 _MainTex ("Base (RGB) Alpha (A)", 2D) = "white" {}
 _Cutoff ("Base Alpha cutoff", Range (.0,.9)) = .2
}

SubShader {
 Tags { "Queue"="Transparent" }

 Lighting off
 ZWrite Off
 // 双面显示打开
 Cull Off
 Blend SrcAlpha OneMinusSrcAlpha
 // pass通道

 Pass {
 CGPROGRAM
 #pragma vertex vert
 #pragma fragment frag

 #include "UnityCG.cginc"

 struct appdata_t {
 float4 vertex : POSITION;
 float4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };

 struct v2f {
 float4 vertex : SV_POSITION;
 float4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };

 sampler2D _MainTex;
 float4 _MainTex_ST;
 float _Cutoff;

 v2f vert (appdata_t v)
 {
 v2f o;
 o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.color;
 o.texcoord = TRANSFORM_TEX(v.texcoord, _MainTex);
 return o;
 }

 float4 _Color;
 half4 frag (v2f i) : SV_Target
 {
 half4 col = tex2D(_MainTex, i.texcoord);
 if(col.a < _Cutoff)
 {
 clip(col.a - _Cutoff);
 }
 else
 {
 col.rgb = col.rgb * float3(0,0,0);
 col.rgb = col.rgb + _Color;
 col.a = _Color.a;
 }
 return col;
 }
 ENDCG
 }
}

}

 设计的Shader采用了片段着色器和像素着色器，下面逐一给大家介绍。首先我们看一下片段着色器，函数代码如下所示。

 v2f vert (appdata_t v)
 {
 v2f o;
 o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.color;
 o.texcoord = TRANSFORM_TEX(v.texcoord, _MainTex);
 return o;
 }

 该函数中的参数appdata_t是已定义好的结构体，在该函数中实现了顶点的变换，调用了Shader库函数mul和定义的宏UNITY_MATRIX_MVP矩阵变换，该函数表示的是模型视口投影变换矩阵。纹理坐标变换调用了函数 TRANSFORM_TEX，它的参数是纹理坐标v.texcoord和模型纹理_MainTex，返回的参数是作为像素着色器输入的参数。

 下面介绍像素着色器，函数代码所示。

 float4 _Color;
 half4 frag (v2f i) : SV_Target
 {
 half4 col = tex2D(_MainTex, i.texcoord);
 if(col.a < _Cutoff)
 {
 clip(col.a - _Cutoff);
 }
 else
 {
 col.rgb = col.rgb * float3(0,0,0);
 col.rgb = col.rgb + _Color;
 col.a = _Color.a;
 }
 return col;
 }

 该函数的核心是通过判断语句if(col.a < _Cutoff)把小于_Cutoff颜色裁剪掉，调用函数Clip，否则就进行颜色叠加操作col.rgb = col.rgb + _Color;最后返回颜色col。

 这个Shader实现了透明材质的渲染，直接将Shader放到Quad平面的材质上就可以了，大家可以自己调试一下效果。如果遇到阴影重叠问题，可以将角色设置成不同的Layer，可以在Camera中用Cull mask裁剪相应的Layer，其在游戏中的运用效果如图8-10和图8-11所示。

 [image:]
 图8-10　游戏中的角色阴影渲染

 [image:]
 图8-11　游戏中的怪物阴影渲染

 8.4　小结

 游戏中实时阴影的渲染非常重要，由于移动端硬件的限制，在PC端运行的实时阴影算法很难移植到移动端，效率问题也是非常难解决的问题。所以移动端的游戏很多时候只是在角色下面加个黑色的圆框表示阴影，角色走动时跟着角色移动。使用Unity的RenderTexture技术能非常完美地解决在移动端运行实时阴影的问题。

 第9章

 移动端海水仿真技术

 海水虚拟仿真技术一直是游戏开发和VR/AR开发中的一个热点，移动端的海水仿真更是热点中的热点。如何在移动端实现真正的海水仿真呢？本章就是专门为解决这个问题而设计的。从技术的实现原理到运用算法解决海浪波动以及实现海水反射、折射效果，同时实现物体与海水作用的物理效果：漂浮在海面上的船只会随着海浪的运动而上下浮动，真正做到海浪的模拟。

 本章利用弗洛伊德算法和快速傅立叶变换实现了海浪的波动。鉴于移动端硬件的限制，海水网格采用多组海水网格模块无缝拼接成浩瀚的大海，海水会随着风浪的大小有所变化。海水的高光、反射和折射渲染是通过Shader技术实现的，开发者可以直接使用该技术开发海战类游戏或者海水的虚拟仿真。在讲解技术实现之前，先给大家展现一下效果，如图9-1所示。

 从图9-1中可以看到，海水实现了海面高光、海浪波动、物体在海面上起伏、海面的泡沫、海水的反射和折射等效果，该技术已经应用到了3D海战游戏以及3D虚拟仿真项目中，下面我们开始讲解海水的实现。

 [image:]
 图9-1　海水仿真技术效果图

 9.1　海水实现的技术原理

 大家玩过的3D海战类游戏大多是在PC端运行的，由于硬件的原因，我们很难将在PC端运行的海水直接移植到移动端运行，即使在移动端能运行的海水，相对来说效果也比较差。但是本章实现的海水可以在移动端运行，并且效果可以跟PC端媲美，下面说一下它的实现原理。为了能在手机端运行，我们将海水分成多个网格进行处理，换句话说，就是将多块网格无缝拼接成无边的海洋效果，如图9-2所示。

 [image:]
 图9-2　海水多块网格的无缝拼接

 图9-2显示的就是海水网格的实现方式，它是由多个相同大小的网格拼接而成的，网格是由程序自定义生成的，而且为了优化效率还实现了网格的LOD（Levels of Detail，层次细节）技术，海水网格块大小以及海水网格块数量都可以由开发者自己定义，设置非常方便。这样可以更好地满足不同移动端设备的需求，可以根据Android系统自行定义海水网格块的数量，下面介绍海水网格的生成。

 9.2　海水网格

 网格的实现和DirectX或者OpenGL实现的自定义网格原理是一样的。在Unity中首先要自定义一个网格Mesh，同时自定义纹理坐标UV、顶点坐标和顶点索引，并将它们赋值给已定义的Mesh，这就实现了海水网格初始化工作。现在把生成海水网格初始化的代码给读者展示一下。

 Mesh m = new Mesh ();
 Vector3[] verts = new Vector3[4];
 Vector2[] uv = new Vector2[4];
 Vector3[] n = new Vector3[4];
 int[] tris = new int[6];

 float minSizeX = -1024;
 float maxSizeX = 1024;

 float minSizeY = -1024;
 float maxSizeY = 1024;

 verts [0] = new Vector3 (minSizeX, 0.0f, maxSizeY);
 verts [1] = new Vector3 (maxSizeX, 0.0f, maxSizeY);
 verts [2] = new Vector3 (maxSizeX, 0.0f, minSizeY);
 verts [3] = new Vector3 (minSizeX, 0.0f, minSizeY);

 tris [0] = 0;
 tris [1] = 1;
 tris [2] = 2;

 tris [3] = 2;
 tris [4] = 3;
 tris [5] = 0;

 m.vertices = verts;
 m.uv = uv;
 m.normals = n;
 m.triangles = tris;

 MeshFilter mfilter = gameObject.GetComponent<MeshFilter>();

 if (mfilter == null)
 mfilter = gameObject.AddComponent<MeshFilter>();

 mfilter.mesh = m;

 这段代码是自定义纹理网格，前四行定义了生成新的Mesh同时定义声明了顶点、UV纹理坐标和法线，接着就是网格初始化以及对网格进行赋值操作，最后把MeshFilter这个组件加入到Mesh中，自定义的海水网格就生成了。如果读者不明白不要着急，接下来开始介绍实现海水的算法。

 9.3　海水算法

 海水算法是由多种算法一起实现的，包括传统的弗洛伊德算法、傅立叶变换和柏林噪音算法等。将算法应用到程序中，其实就是把算法用程序语言编写出来。实现海水算法的代码量比较大，在这里只把核心的代码给大家展示一下，项目的完整代码我会提供下载地址，在学习本节时，开发者可以去泰课在线、CSDN教育在线、51CTO教育在线网站观看我对于海水算法的视频讲座。以下代码主要实现了海水算法中的快速傅立叶变换算法，快速傅立叶变换函数实现如下所示。

//计算复数数据集的2D傅里叶变换
public static voidFFT2(ComplexF[]data,intxLength, intyLength, FourierDirection direction)
{
 int xInc = 1;
 int yInc = xLength;

 if(xLength > 1) {
 Fourier.SyncLookupTableLength(xLength);
 for(int y = 0; y < yLength; y ++) {
 int xStart = y * yInc;
 Fourier.LinearFFT_Quick(data, xStart, xInc, xLength, direction);
 }
 }

 if(yLength > 1) {
 Fourier.SyncLookupTableLength(yLength);
 for(int x = 0; x < xLength; x ++) {
 int yStart = x * xInc;
 Fourier.LinearFFT_Quick(data, yStart, yInc, yLength, direction);
 }
 }
 }

 该函数的参数有复数数组ComplexF以及海水的方向FourierDirection两个。海水滚动的方向分为前后两种，利用枚举表示，代码如下所示。

 using System;
 /// <summary>
 /// 傅立叶变换的方向.
 /// </summary>
 public enum FourierDirection : int {
 Forward = 1,

 Backward = -1,
 }

 复数ComplexF实现的核心代码部分展示如下。

using System;
using System.Diagnostics;
using System.Runtime.InteropServices;

/// <summary>
/// 单精度复数表示.
/// </summary>
[StructLayout(LayoutKind.Sequential)]
public struct ComplexF : IComparable, ICloneable {

 /// <summary>
 ///复数的实数分量
 /// </summary>
 public float Re;

 /// <summary>
 ///复数的虚分量
 /// </summary>
 public float Im;

 /// <summary>
 ///复数是由实部和虚部组成的
 /// </summary>
 /// <param name="real"></param>
 /// <param name="imaginary"></param>
 public ComplexF(float real, float imaginary) {
 this.Re = (float) real;
 this.Im = (float) imaginary;
 }

 /// <summary>
 ///创建基于现有复数的复数
 /// </summary>
 /// <param name="c"></param>
 public ComplexF(ComplexF c) {
 this.Re = c.Re;
 this.Im = c.Im;
 }

 /// <summary>
 ///从实部和虚分量创建复数
 /// </summary>
 /// <param name="real"></param>
 /// <param name="imaginary"></param>
 /// <returns></returns>
 static public ComplexF FromRealImaginary(float real, float imaginary) {
 ComplexF c;
 c.Re= (float) real;
 c.Im = (float) imaginary;
 return c;
 }

 /// <summary>
 ///利用一个模数（长度）的复数和一个参数（弧度）创建一个复数
 /// </summary>
 /// <param name="modulus"></param>
 /// <param name="argument"></param>
 /// <returns></returns>
 static public ComplexF FromModulusArgument(float modulus, float argument) {
 ComplexF c;
 c.Re= (float)(modulus * System.Math.Cos(argument));
 c.Im= (float)(modulus * System.Math.Sin(argument));
 return c;
 }
｝

 在函数FFT2中调用了函数LinearFFT_Quick。函数LinearFFT_Quick实现了线性快速傅立叶变换，函数实现代码如下所示。

 private static void LinearFFT_Quick(float[] data, int start, int inc, int length, FourierDirection direction) {

 //复制到Buffer
 float[] buffer = null;
 LockBufferF(length * 2, ref buffer);
 int j = start;
 for(int i = 0; i < length * 2; i ++) {
 buffer[i] = data[j];
 j += inc;
 }
 //快速傅立叶变换函数
 FFT_Quick(buffer, length, direction);

 //从Buffer中复制
 j = start;
 for(int i = 0; i < length; i ++) {
 data[j] = buffer[i];
 j += inc;
 }
 UnlockBufferF(ref buffer);
 }

 函数LinearFFT_Quick又调用了函数FFT_Quick(buffer, length, direction)，实现了层层调用快速傅立叶变换，该函数实现代码如下所示。

//计算复数数据集的1D傅立叶变换
public static void FFT_Quick(float[] data, int length, FourierDirection direction) {

 int ln = Fourier.Log2(length);

 //重新排序数组
 Fourier.ReorderArray(data);

 int N = 1;
 int signIndex = (direction == FourierDirection.Forward) ? 0 : 1;
 for(int level = 1; level <= ln; level ++) {
 int M = N;
 N <<= 1;

 float[] uRLookup = _uRLookupF[level, signIndex];
 float[] uILookup = _uILookupF[level, signIndex];

 for(int j = 0; j < M; j ++) {
 float uR = uRLookup[j];
 float uI = uILookup[j];

 for(int evenT = j; evenT < length; evenT += N) {
 int even = evenT << 1;
 int odd = (evenT + M) << 1;

 float r = data[odd];
 float i = data[odd+1];

 float odduR = r * uR - i * uI;
 float odduI = r * uI + i * uR;

 r = data[even];
 i = data[even+1];

 data[even] = r + odduR;
 data[even+1] = i + odduI;

 data[odd] = r - odduR;
 data[odd+1] = i - odduI;
 }
 }
 }
 }

 上述函数最终实现了海水的核心算法——快速傅立叶变换，接下来开始构建海水的技术实现。

 9.4　海水的技术实现

 海水的核心算法已经通过代码实现了，接下来我们需要把实现的算法接口在实现海水时利用起来。在编写海水代码时，先理清架构思路。我编写代码，都是先从策划入手把代码思路通过流程图的方式先画出来，这样的好处是可以帮你理清思路，辅助编写代码。其实思路如果理顺了，代码编写的速度就会非常快。海水的技术实现框架如图9-3所示。

 [image:]
 图9-3　海水的技术实现框架

 从图9-3中可以看出，要实现海水的绘制，首先要生成网格。从程序优化角度考虑，程序对海水网格使用了LOD技术，这样远处的海水网格用粗网格绘制，近处的用细网格绘制，最后使用已实现的海水算法进行绘制，让其产生海浪滚动以及无边的海洋的效果，在此基础上对海平面进行海面的高光、反射、折射效果渲染，这样真实的海水就仿真模拟出来了。为了便于理解，在这里我把海水实现的完整代码给大家展示一下。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

//水类型
[System.Serializable]
public enum WaterType
{
 Normal,
 Ice,
 Dark,
 Islands
}

public class Ocean : MonoBehaviour
{

 public int width = 32;
 public int height = 32;
 public int renderTexWidth = 128;
 public int renderTexHeight = 128;
 public float scale = 0.1f;
 public float speed = 0.7f;
 public float wakeDistance = 5f;
 public Vector3 size = new Vector3 (150.0f, 1.0f, 150.0f);
 public int tiles = 2;
 private float pWindx=10.0f;
 public float windx {
 get {
 return pWindx;
 }
 set {
 if (value!=pWindx) {
 this.pWindx=value;
 this.InitWaveGenerator();
 }
 }
 }
 private int pNormal_scale=8;
 public int normal_scale {
 get {
 return pNormal_scale;
 }
 set {
 if (value!=pNormal_scale) {
 pNormal_scale=value;
 this.InitWaveGenerator();
 }
 }
 }
 private float pNormalStrength=2f;
 public float normalStrength {
 get {
 return pNormalStrength;
 }
 set {
 if (value!=pNormalStrength) {
 pNormalStrength=value;
 }
 }
 }
 public float choppy_scale = 2.0f;

 public Material material;
 public bool followMainCamera = true;
 private int max_LOD = 4;
 private ComplexF[] h0;
 private ComplexF[] t_x;
 private ComplexF[] n0;
 private ComplexF[] n_x;
 private ComplexF[] n_y;
 private ComplexF[] data;
 private Color[] pixelData;
 private Texture2D textureA;
 private Texture2D textureB;
 private Vector3[] baseHeight;

 private Mesh baseMesh;
 private GameObject child;
 private List<List<Mesh>> tiles_LOD;
 private int g_height;
 private int g_width;
 private int n_width;
 private int n_height;
 private Vector2 sizeInv;

 private bool normalDone = false;
 private bool reflectionRefractionEnabled = false;
 private Camera offscreenCam = null;
 private RenderTexture reflectionTexture = null;
 private RenderTexture refractionTexture = null;

 private Vector3[] vertices;
 private Vector3[] normals;
 private Vector4[] tangents;
 public Transform player;
 public Transform sun;
 public Vector4 SunDir;

 public WaterType waterType = WaterType.Normal;
 public Color surfaceColor = new Color (0.3f, 0.5f, 0.3f, 1.0f);
 public Color iceSurfaceColor = new Color (0.3f, 0.5f, 0.3f, 1.0f);
 public Color darkSurfaceColor = new Color (0.3f, 0.5f, 0.3f, 1.0f);
 public Color islandsSurfaceColor = new Color (0.3f, 0.5f, 0.3f, 1.0f);
 public Color waterColor = new Color (0.3f, 0.4f, 0.3f);
 public Color iceWaterColor = new Color (0.3f, 0.4f, 0.3f);
 public Color darkWaterColor = new Color (0.3f, 0.4f, 0.3f);
 public Color islandsWaterColor = new Color (0.3f, 0.4f, 0.3f);
 public Shader oceanShader;
 public bool renderReflection = true;

 private float prevValue = 0;
 private float nextValue = 0;
 private float prevTime = -100000;
 private const float timeFreq = 1f/ 120f;

 //调用该接口改变海水的高度
 public void SetWaves (float x) {
 scale = x;
 }
 //获取海水网格在某个点的海水高度
 public float GetWaterHeightAtLocation(float x, float y)
 {
 x = x / size.x;
 x = (x-Mathf.FloorToInt(x)) * width;
 y = y / size.z;
 y = (y-Mathf.FloorToInt(y)) * height;

 int index = (int)width * Mathf.FloorToInt(y) + Mathf.FloorToInt(x);
 return data[index].Re * scale / (width * height);
 }
 //高斯公式计算
 float GaussianRnd ()
 {
 float x1 = Random.value;
 float x2 = Random.value;

 if (x1 == 0.0f)
 x1 = 0.01f;

 return (float)(System.Math.Sqrt (-2.0 * System.Math.Log (x1)) * System.Math.Cos (2.0 * Mathf.PI * x2));
 }

 //Phillips频谱公式
 float P_spectrum (Vector2 vec_k, Vector2 wind)
 {
 //设置风向只在一个方向
 float A = vec_k.x > 0.0f ? 1.0f : 0.05f;
 float L = wind.sqrMagnitude / 9.81f;
 float k2 = vec_k.sqrMagnitude;
 //避免被零除
 if (vec_k.sqrMagnitude == 0.0f) {
 return 0.0f;
 }
 float vcsq=vec_k.magnitude;
 return (float)(A * System.Math.Exp (-1.0f / (k2 * L * L) - System.Math.Pow (vcsq * 0.1, 2.0)) / (k2 * k2) * System.Math.Pow (Vector2.Dot (vec_k / vcsq, wind / wind.magn itude), 2.0));
 }

 void Start ()
 {

 //标准化海水的大小
 n_width = 128;
 n_height = 128;

 //避免每帧都去除，所以只做了一次启动
 sizeInv = new Vector2(1f / size.x, 1f / size.z);

 SetupOffscreenRendering ();

 pixelData = new Color[n_width * n_height];

 //初始化海水的高度矩阵
 data = new ComplexF[width * height];

 //正切
 t_x = new ComplexF[width * height];

 n_x = new ComplexF[n_width * n_height];
 n_y = new ComplexF[n_width * n_height];

 //几何大小
 g_height = height + 1;
 g_width = width + 1;

 tiles_LOD = new List<List<Mesh>>();

 for (int L0D=0; L0D<max_LOD; L0D++) {
 tiles_LOD.Add (new List<Mesh>());
 }

 GameObject tile;
 //海水网格块数量
 for (int y=0; y<tiles; y++) {
 for (int x=0; x<tiles; x++) {

 float cy = y - Mathf.Floor(tiles * 0.5f);
 float cx = x - Mathf.Floor(tiles * 0.5f);
 tile = new GameObject ("WaterTile");
 Vector3 pos=tile.transform.position;
 pos.x = cx * size.x;
 pos.y = transform.position.y;
 pos.z = cy * size.z;
 tile.transform.position=pos;
 tile.AddComponent (typeof(MeshFilter));
 tile.AddComponent ("MeshRenderer");
 tile.renderer.material = material;

 tile.transform.parent = transform;

 //我们也不想这些被吸引在做折射或反射，所以我们将添加的水层过滤
 tile.layer = LayerMask.NameToLayer ("Water");

 //决定属于哪个海水块的LOD
 tiles_LOD[0].Add((tile.GetComponent<MeshFilter>()).mesh);
 }
 }

 //初始化海浪的波普一个是顶点的偏移值，另一个是标准地图值
 h0 = new ComplexF[width * height];
 n0 = new ComplexF[n_width * n_height];

 InitWaveGenerator();
 UpdateWaterColor ();
 GenerateHeightmap ();
 windx = 20f;

 //如果关闭海水的反射和折射，那么把海水的LOD设置成1
 if(!renderReflection)
 EnableReflection(false);
 else
 EnableReflection(true);
 }

 void InitWaveGenerator() {
 //将风力局限于一个方向，减少计算
 Vector2 wind = new Vector2 (windx, 0.0f);

 //初始化海浪生成
 for (int y=0; y<height; y++) {
 for (int x=0; x<width; x++) {
 float yc = y < height / 2f ? y : -height + y;
 float xc = x < width / 2f ? x : -width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / size.x, 2.0f * Mathf .PI * yc / size.z);
 h0 [width * y + x] = new ComplexF (GaussianRnd (), GaussianRnd ()) * 0.7 07f * (float)System.Math.Sqrt (P_spectrum (vec_k, wind));
 }
 }

 for (int y=0; y<n_height; y++) {
 for (int x=0; x<n_width; x++) {
 float yc = y < n_height / 2f ? y : -n_height + y;
 float xc = x < n_width / 2f ? x : -n_width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / (size.x / normal_sca le), 2.0f * Mathf.PI * yc / (size.z / normal_scale));
 n0 [n_width * y + x] = new ComplexF (GaussianRnd (), GaussianRnd ()) * 0 .707f * (float)System.Math.Sqrt (P_spectrum (vec_k, wind));
 }
 }
 }

 void GenerateHeightmap ()
 {

 Mesh mesh = new Mesh ();

 int y = 0;
 int x = 0;

 //建立顶点和UV坐标
 Vector3 []vertices = new Vector3[g_height * g_width];
 Vector4 []tangents = new Vector4[g_height * g_width];
 Vector2 []uv = new Vector2[g_height * g_width];

 Vector2 uvScale = new Vector2 (1.0f / (g_width - 1f), 1.0f / (g_height - 1f)); Vector3 sizeScale = new Vector3 (size.x / (g_width - 1f), size.y, size.z / (g_he ight - 1f));

 for (y=0; y<g_height; y++) {
 for (x=0; x<g_width; x++) {
 Vector3 vertex = new Vector3 (x, 0.0f, y);
 vertices [y * g_width + x] = Vector3.Scale (sizeScale, vertex);
 uv [y * g_width + x] = Vector2.Scale (new Vector2 (x, y), uvScale);
 }
 }

 mesh.vertices = vertices;
 mesh.uv = uv;

 for (y=0; y<g_height; y++) {
 for (x=0; x<g_width; x++) {
 tangents [y * g_width + x] = new Vector4 (1.0f, 0.0f, 0.0f, -1.0f);
 }
 }
 mesh.tangents = tangents;

 for (int L0D=0; L0D<max_LOD; L0D++) {
 Vector3[] verticesLOD = new Vector3[(int)(height / System.Math.Pow (2, L0D) + 1) * (int)(width / System.Math.Pow (2, L0D) + 1)];
 Vector2[] uvLOD = new Vector2[(int)(height / System.Math.Pow (2, L0D) + 1) * (int)(width / System.Math.Pow (2, L0D) + 1)];
 int idx = 0;

 for (y=0; y<g_height; y+=(int)System.Math.Pow(2,L0D)) {
 for (x=0; x<g_width; x+=(int)System.Math.Pow(2,L0D)) {
 verticesLOD [idx] = vertices [g_width * y + x];
 uvLOD [idx++] = uv [g_width * y + x];
 }
 }
 for (int k=0; k<tiles_LOD[L0D].Count; k++) {
 Mesh meshLOD = tiles_LOD [L0D][k];
 meshLOD.vertices = verticesLOD;
 meshLOD.uv = uvLOD;
 }
 }

 //构建三角形索引以及设置LOD
 for (int L0D=0; L0D<max_LOD; L0D++) {
 int index = 0;
 int width_LOD = (int)(width / System.Math.Pow (2, L0D) + 1);
 int[] triangles = new int[(int)(height / System.Math.Pow (2, L0D) * width / System.Math.Pow (2, L0D)) * 6];
 for (y=0; y<(int)(height/System.Math.Pow(2,L0D)); y++) {
 for (x=0; x<(int)(width/System.Math.Pow(2,L0D)); x++) {
 //每个格子由两个三角形组成
 triangles [index++] = (y * width_LOD) + x;
 triangles [index++] = ((y + 1) * width_LOD) + x;
 triangles [index++] = (y * width_LOD) + x + 1;

 triangles [index++] = ((y + 1) * width_LOD) + x;
 triangles [index++] = ((y + 1) * width_LOD) + x + 1;
 triangles [index++] = (y * width_LOD) + x + 1;
 }
 }
 for (int k=0; k<tiles_LOD[L0D].Count; k++) {
 Mesh meshLOD = tiles_LOD [L0D][k];
 meshLOD.triangles = triangles;
 }
 }

 baseMesh = mesh;
 }

 //对于反射和折射的渲染会单独使用一个摄像机进行处理

 void SetupOffscreenRendering ()
 {
 if (this.renderReflection){
 reflectionTexture = new RenderTexture (renderTexWidth, renderTexHeight, 0);
 refractionTexture = new RenderTexture (renderTexWidth, renderTexHeight, 0);

 reflectionTexture.wrapMode = TextureWrapMode.Clamp;
 refractionTexture.wrapMode = TextureWrapMode.Clamp;

 reflectionTexture.isPowerOfTwo = true;
 refractionTexture.isPowerOfTwo = true;

 material.SetTexture ("_Reflection", reflectionTexture);
 material.SetTexture ("_Refraction", refractionTexture);
 material.SetVector ("_Size", new Vector4 (size.x, size.y, size.z, 0.0f));
 }

 //生成一个摄像机用于反射和折射的渲染
 GameObject cam = new GameObject ();
 cam.name = "DeepWaterOffscreenCam";
 cam.transform.parent = transform;

 offscreenCam = cam.AddComponent (typeof(Camera)) as Camera;
 offscreenCam.clearFlags = CameraClearFlags.Color;
 offscreenCam.depth = -1;
 offscreenCam.enabled = false;
 //生成海水网格包围盒
 gameObject.AddComponent (typeof(MeshRenderer));

 renderer.material.renderQueue = 1001;
 renderer.receiveShadows = false;
 renderer.castShadows = false;

 Mesh m = new Mesh ();

 Vector3[] verts = new Vector3[4];
 Vector2[] uv = new Vector2[4];
 Vector3[] n = new Vector3[4];
 int[] tris = new int[6];

 float minSizeX = -1024;
 float maxSizeX = 1024;

 float minSizeY = -1024;
 float maxSizeY = 1024;

 verts [0] = new Vector3 (minSizeX, 0.0f, maxSizeY);
 verts [1] = new Vector3 (maxSizeX, 0.0f, maxSizeY);
 verts [2] = new Vector3 (maxSizeX, 0.0f, minSizeY);
 verts [3] = new Vector3 (minSizeX, 0.0f, minSizeY);

 tris [0] = 0;
 tris [1] = 1;
 tris [2] = 2;

 tris [3] = 2;
 tris [4] = 3;
 tris [5] = 0;

 m.vertices = verts;
 m.uv = uv;
 m.normals = n;
 m.triangles = tris;

 MeshFilter mfilter = gameObject.GetComponent<MeshFilter>();

 if (mfilter == null)
 mfilter = gameObject.AddComponent<MeshFilter>();

 mfilter.mesh = m;

 m.RecalculateBounds ();

 verts [0] = Vector3.zero;
 verts [1] = Vector3.zero;
 verts [2] = Vector3.zero;
 verts [3] = Vector3.zero;

 m.vertices = verts;

 reflectionRefractionEnabled = true;
 }

 //当你要改变渲染纹理质量时，必须重新计算
 void RecalculateRenderTextures()
 {
 if (this.renderReflection){
 reflectionTexture = new RenderTexture(renderTexWidth, renderTexHeight, 0);
 refractionTexture = new RenderTexture(renderTexWidth, renderTexHeight, 0);

 reflectionTexture.wrapMode = TextureWrapMode.Clamp;
 refractionTexture.wrapMode = TextureWrapMode.Clamp;

 reflectionTexture.isPowerOfTwo = true;
 refractionTexture.isPowerOfTwo = true;

 material.SetTexture("_Reflection", reflectionTexture);
 material.SetTexture("_Refraction", refractionTexture);
 }
 }

 //删除渲染纹理
 void OnDisable ()
 {
 if (reflectionTexture != null)
 DestroyImmediate (reflectionTexture);

 if (refractionTexture != null)
 DestroyImmediate (refractionTexture);

 reflectionTexture = null;
 refractionTexture = null;

 }

 void Update ()
 {
 //如果玩家是null的，则根据Tag查找
 if(player == null)
 player = GameObject.FindGameObjectWithTag("Player").GetComponent<Transform>();

 //得到太阳的反射方向
 if(sun != null){
 SunDir = sun.transform.forward;
 material.SetVector ("_SunDir", SunDir);
 }

 if (this.renderReflection)
 RenderObject ();

 if (followMainCamera) {

 Vector3 centerOffset;

 centerOffset.y = transform.position.y;

 //优化海洋块的移动
 centerOffset.x = Mathf.Floor((player.position.x + size.x * 0.5f) * sizeInv .x) * size.x;
 centerOffset.z = Mathf.Floor((player.position.z + size.z * 0.5f) * sizeInv .y) * size.z;
 if(transform.position != centerOffset)
 transform.position = centerOffset;

 }

 float hhalf=height/2f;
 float whalf=width/2f;
 float time=Time.time;
 for (int y = 0; y<height; y++) {
 for (int x = 0; x<width; x++) {
 int idx = width * y + x;
 float yc = y < hhalf ? y : -height + y;
 float xc = x < whalf ? x : -width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / size.x, 2.0f * Mathf .PI * yc / size.z);
 float sqrtMagnitude=(float)System.Math.Sqrt((vec_k.x * vec_k.x) + (vec_k .y * vec_k.y));
 float iwkt = (float)System.Math.Sqrt(9.81f * sqrtMagnitude) * time * spe ed;
 ComplexF coeffA = new ComplexF ((float)System.Math.Cos(iwkt), (float)Sys tem.Math.Sin(iwkt));
 ComplexF coeffB;
 coeffB.Re = coeffA.Re;
 coeffB.Im = -coeffA.Im;

 int ny = y > 0 ? height - y : 0;
 int nx = x > 0 ? width - x : 0;

 data [idx] = h0 [idx] * coeffA + h0[width * ny + nx].GetConjugate() * co effB;
 t_x [idx] = data [idx] * new ComplexF (0.0f, vec_k.x) - data [idx] * vec_k.y;

 //计算海浪滚动的波纹
 if (x + y > 0)
 data [idx] += data [idx] * vec_k.x / sqrtMagnitude;
 }
 }

 Fourier.FFT2 (data, width, height, FourierDirection.Backward);
 Fourier.FFT2 (t_x, width, height, FourierDirection.Backward);

 //得到基础的顶点和UV坐标
 if (baseHeight == null) {
 baseHeight = baseMesh.vertices;
 vertices = new Vector3[baseHeight.Length];
 normals = new Vector3[baseHeight.Length];
 tangents = new Vector4[baseHeight.Length];
 }

 int wh=width*height;
 float scaleA = choppy_scale / wh;
 float scaleB = scale / wh;
 float scaleBinv = 1.0f / scaleB;

 for (int i=0; i<wh; i++) {
 int iw = i + i / width;
 vertices [iw] = baseHeight [iw];
 vertices [iw].x += data [i].Im * scaleA;
 vertices [iw].y = data [i].Re * scaleB;

 normals [iw] = Vector3.Normalize(new Vector3 (t_x [i].Re, scaleBinv, t_x [i] .Im));

 if (((i + 1) % width)==0) {
 int iwi=iw+1;
 int iwidth=i+1-width;
 vertices [iwi] = baseHeight [iwi];
 vertices [iwi].x += data [iwidth].Im * scaleA;
 vertices [iwi].y = data [iwidth].Re * scaleB;

 normals [iwi] = Vector3.Normalize(new Vector3 (t_x [iwidth].Re, scaleBin v, t_x [iwidth].Im));

 }
 }

 int offset = g_width * (g_height - 1);

 for (int i=0; i<g_width; i++) {
 int io=i+offset;
 int mod=i % width;
 vertices [io] = baseHeight [io];
 vertices [io].x += data [mod].Im * scaleA;
 vertices [io].y = data [mod].Re * scaleB;

 normals [io] = Vector3.Normalize(new Vector3 (t_x [mod].Re, scaleBinv, t_x [mod].Im));
 }

 int gwgh=g_width*g_height-1;
 for (int i=0; i<gwgh; i++) {

 //需要保留反射和折射
 if (!reflectionRefractionEnabled) {
 if (((i + 1) % g_width) == 0) {
 tangents [i] = Vector3.Normalize((vertices [i - width + 1] + new Vec tor3 (size.x, 0.0f, 0.0f) - vertices [i]));
 } else {
 tangents [i] = Vector3.Normalize((vertices [i + 1] - vertices [i]));
 }

 tangents [i].w = 1.0f;
 } else {
 Vector3 tmp;

 if (((i + 1) % g_width) == 0) {
 tmp = Vector3.Normalize(vertices[i - width + 1] + new Vector3 (size. x, 0.0f, 0.0f) - vertices [i]);
 } else {
 tmp = Vector3.Normalize(vertices [i + 1] - vertices [i]);
 }

 tangents [i] = new Vector4 (tmp.x, tmp.y, tmp.z, tangents [i].w);
 }
 }
 //在反射模式中，使用正切系数w控制海浪泡沫的强度
 if (reflectionRefractionEnabled) {
 for (int y = 0; y < g_height; y++) {
 for (int x = 0; x < g_width; x++) {
 int item=x + g_width * y;
 if (x + 1 >= g_width) {
 tangents [item].w = tangents [g_width * y].w;

 continue;
 }

 if (y + 1 >= g_height) {
 tangents [item].w = tangents [x].w;

 continue;
 }

 float right = vertices[(x + 1) + g_width * y].x - vertices[item].x;

 float foam = right/(size.x / g_width);

 if (foam < 0.0f)
 tangents [item].w = 1f;
 else if (foam < 0.5f)
 tangents [item].w += 3.0f * Time.deltaTime;
 else
 tangents [item].w -= 0.4f * Time.deltaTime;

 if (player != null)
 {
 Vector3 player2Vertex = (player.position - vertices[item] - tran sform.position);
 //围绕在船周围的泡沫
 if (player2Vertex.x >= size.x)
 player2Vertex.x -= size.x;

 if (player2Vertex.x<= -size.x)
 player2Vertex.x += size.x;

 if (player2Vertex.z >= size.z)
 player2Vertex.z -= size.z;

 if (player2Vertex.z<= -size.z)
 player2Vertex.z += size.z;
 player2Vertex.y = 0;

 if (player2Vertex.sqrMagnitude < wakeDistance * wakeDistance)
 tangents[item].w += 3.0f * Time.deltaTime;
 }

 tangents [item].w = Mathf.Clamp (tangents[item].w, 0.0f, 2.0f);
 }
 }
 }

 tangents [gwgh] = Vector4.Normalize(vertices [gwgh] + new Vector3 (size.x, 0.0f, 0.0f) - vertices [1]);

 for (int L0D=0; L0D<max_LOD; L0D++) {
 int den = (int)System.Math.Pow (2f, L0D);
 int itemcount = (int)((height / den + 1) * (width / den + 1));

 Vector4[] tangentsLOD = new Vector4[itemcount];
 Vector3[] verticesLOD = new Vector3[itemcount];
 Vector3[] normalsLOD = new Vector3[itemcount];

 int idx = 0;

 for (int y=0; y<g_height; y+=den) {
 for (int x=0; x<g_width; x+=den) {
 int idx2 = g_width * y + x;
 verticesLOD [idx] = vertices [idx2];
 tangentsLOD [idx] = tangents [idx2];
 normalsLOD [idx++] = normals [idx2];
 }
 }
 for (int k=0; k< tiles_LOD[L0D].Count; k++) {
 Mesh meshLOD = tiles_LOD [L0D][k];
 meshLOD.vertices = verticesLOD;
 meshLOD.normals = normalsLOD;
 meshLOD.tangents = tangentsLOD;
 }
 }

 }

 //对象的渲染需要在每帧中做一次
 void RenderObject ()
 {
 if (Camera.current == offscreenCam)
 return;

 if (reflectionTexture == null || refractionTexture == null)
 return;

 if (this.renderReflection)
 RenderReflectionAndRefraction ();
 }

 //反射和折射的渲染buffer是复制当前摄像机的设置到另一个摄像机上
 public LayerMask renderLayers = -1;

 void RenderReflectionAndRefraction ()
 {

 Camera renderCamera = Camera.mainCamera;

 Matrix4x4 originalWorldToCam = renderCamera.worldToCameraMatrix;

 int cullingMask = ~(1 << 4) & renderLayers.value;
 ;

 //反射通道
 Matrix4x4 reflection = Matrix4x4.zero;

 //用局部平面而不是全局的

 float d = -transform.position.y;
 offscreenCam.backgroundColor = RenderSettings.fogColor;

 CameraHelper.CalculateReflectionMatrix(ref reflection, new Vector4 (0f, 1f, 0f, d));

 offscreenCam.transform.position = reflection.MultiplyPoint (renderCamera.transfo rm.position);
 offscreenCam.transform.rotation = renderCamera.transform.rotation;
 offscreenCam.worldToCameraMatrix = originalWorldToCam * reflection;

 offscreenCam.cullingMask = cullingMask;
 offscreenCam.targetTexture = reflectionTexture;

 GL.SetRevertBackfacing (true);

 Vector4 cameraSpaceClipPlane = CameraHelper.CameraSpacePlane (offscreenCam, new Vector3 (0.0f, transform.position.y, 0.0f), Vector3.up, 1.0f);

 Matrix4x4 projection = renderCamera.projectionMatrix;
 Matrix4x4 obliqueProjection = projection;

 offscreenCam.fieldOfView = renderCamera.fieldOfView;
 offscreenCam.aspect = renderCamera.aspect;

 CameraHelper.CalculateObliqueMatrix (ref obliqueProjection, cameraSpaceClipPlane);

 offscreenCam.projectionMatrix = obliqueProjection;

 if (!renderReflection)
 offscreenCam.cullingMask = 0;

 offscreenCam.Render ();

 GL.SetRevertBackfacing (false);

 //折射通道
 offscreenCam.cullingMask = cullingMask;
 offscreenCam.targetTexture = refractionTexture;
 obliqueProjection = projection;

 offscreenCam.transform.position = renderCamera.transform.position;
 offscreenCam.transform.rotation = renderCamera.transform.rotation;
 offscreenCam.worldToCameraMatrix = originalWorldToCam;

 cameraSpaceClipPlane = CameraHelper.CameraSpacePlane (offscreenCam, Vector3.zero , Vector3.up, -1.0f);
 CameraHelper.CalculateObliqueMatrix (ref obliqueProjection, cameraSpaceClipPlane);
 offscreenCam.projectionMatrix = obliqueProjection;

 offscreenCam.Render ();

 offscreenCam.projectionMatrix = projection;

 offscreenCam.targetTexture = null;

 }

 //设置改变反射纹理品质
 void ReflectionQuality (string quality){
 OnDisable();
 if(quality == "Low"){
 renderTexWidth = 128;
 renderTexHeight = 128;
 }else{
 renderTexWidth = 512;
 renderTexHeight = 512;
 }
 RecalculateRenderTextures();
 }

 //使用反射
 void EnableReflection(bool isActive)
 {
 renderReflection = isActive;
 if(!isActive){
 material.SetTexture ("_Reflection", null);
 material.SetTexture ("_Refraction", null);
 oceanShader.maximumLOD = 1;
 }else{
 OnDisable();
 oceanShader.maximumLOD = 2;
 RecalculateRenderTextures();
 }
 }

 //不需要每帧都改变海水的颜色
 public void UpdateWaterColor ()
 {

 if (waterType == WaterType.Normal) {
 material.SetColor ("_WaterColor", waterColor);
 material.SetColor ("_SurfaceColor", surfaceColor);
 }else if (waterType == WaterType.Ice) {
 material.SetColor ("_WaterColor", iceWaterColor);
 material.SetColor ("_SurfaceColor", iceSurfaceColor);
 }else if (waterType == WaterType.Dark) {
 material.SetColor ("_WaterColor", darkWaterColor);
 material.SetColor ("_SurfaceColor", darkSurfaceColor);
 }else if (waterType == WaterType.Islands) {
 material.SetColor ("_WaterColor", islandsWaterColor);
 material.SetColor ("_SurfaceColor", islandsSurfaceColor);
 }
 }

}

 以上是海水实现的完整代码，使用该脚本开发时只要将海水的脚本直接挂接到对象上即可。首先演示一下海水网格的无缝拼接，如图9-4所示。

 [image:]
 图9-4　海水网格的无缝拼接

 下面代码实现的是网格的LOD和海水网格块的绘制，它对每块网格都进行了LOD技术处理。

tiles_LOD = new List<List<Mesh>>();
 for (int L0D=0; L0D<max_LOD; L0D++) {
 tiles_LOD.Add (new List<Mesh>());
 }

 GameObject parentTile=new GameObject("ParentTile");
 GameObject tile;

 for (int y=0; y<tiles; y++) {
 for (int x=0; x<tiles; x++) {
 float cy = y - Mathf.Floor(tiles * 0.5f);
 float cx = x - Mathf.Floor(tiles * 0.5f);
 tile = new GameObject ("WaterTile");
 Vector3 pos=tile.transform.position;
 pos.x = cx * size.x;
 pos.y = 0f;
 pos.z = cy * size.z;
 tile.transform.position=pos;
 tile.AddComponent (typeof(MeshFilter));
 tile.AddComponent ("MeshRenderer");
 tile.renderer.material = material;

 tile.transform.parent = parentTile.transform;

 tile.layer = LayerMask.NameToLayer ("Water");
 tiles_LOD[0].Add((tile.GetComponent<MeshFilter>()).mesh);
 }
 }

 无边的海水是由多块大小相同的网格无缝拼接而成的，在图9-4中，左边显示的是生成网格的无缝拼接，右边显示的是网格拼接的数量，海水网格渲染的效果如图9-5所示。

 [image:]
 图9-5　海水网格渲染的效果

 俗话说，无风三尺浪。海上如果没有海浪是不切实际的，这里实现海浪的代码使用了两层循环，它的实现不是我们通常说的改变y的值，而是使用了高斯公式和菲利普斯谱算法，函数代码如下所示。

void InitWaveGenerator() {
 Vector2 wind = new Vector2 (windx, 0.0f);
 for (int y=0; y<height; y++) {
 for (int x=0; x<width; x++) {
 float yc = y < height / 2f ? y : -height + y;
 float xc = x < width / 2f ? x : -width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / size.x, 2.0f * Mathf.PI * yc / size.z);
 h0 [width * y + x] = new ComplexF (GaussianRnd (), GaussianRnd ()) * 0.707f * (float)System.Math.Sqrt (P_spectrum (vec_k, wind));
 }
 }

 for (int y=0; y<n_height; y++) {
 for (int x=0; x<n_width; x++) {
 float yc = y < n_height / 2f ? y : -n_height + y;
 float xc = x < n_width / 2f ? x : -n_width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / (size.x / normal_scale), 2.0f * Mathf.PI * yc / (size.z / normal_scale));
 n0 [n_width * y + x] = new ComplexF (GaussianRnd (), GaussianRnd ()) * 0.707f * (float)System.Math.Sqrt (P_spectrum (vec_k, wind));
 }
 }
 }

 在该代码中实现了高斯公式，其实现函数代码如下所示。

 float GaussianRnd ()
 {
 float x1 = Random.value;
 float x2 = Random.value;

 if (x1 == 0.0f)
 x1 = 0.01f;

 return (float)(System.Math.Sqrt (-2.0 * System.Math.Log (x1)) * System.Math.Cos (2.0 * Mathf.PI * x2));
 }

 菲利普斯算法实现代码如下所示。

 float P_spectrum (Vector2 vec_k, Vector2 wind)
 {
 float A = vec_k.x > 0.0f ? 1.0f : 0.05f;
 float L = wind.sqrMagnitude / 9.81f;
 float k2 = vec_k.sqrMagnitude;
 // Avoid division by zero
 if (vec_k.sqrMagnitude == 0.0f) {
 return 0.0f;
 }
 float vcsq=vec_k.magnitude;
 return (float)(A * System.Math.Exp (-1.0f / (k2 * L * L) - System.Math.Pow (vcsq * 0.1, 2.0)) / (k2 * k2) * System.Math.Pow (Vector2.Dot (vec_k / vcsq, wind / wind.magnitude), 2.0));
 }

 在图9-5中大家可以看到比较蓝的海水，然而我们并没有每一帧都去处理渲染，只设置一次就可以了，海水颜色代码如下所示。

 public void UpdateWaterColor ()
 {
 if (waterType == WaterType.Normal) {
 material.SetColor ("_WaterColor", waterColor);
 material.SetColor ("_SurfaceColor", surfaceColor);
 }else if (waterType == WaterType.Ice) {
 material.SetColor ("_WaterColor", iceWaterColor);
 material.SetColor ("_SurfaceColor", iceSurfaceColor);
 }else if (waterType == WaterType.Dark) {
 material.SetColor ("_WaterColor", darkWaterColor);
 material.SetColor ("_SurfaceColor", darkSurfaceColor);
 }else if (waterType == WaterType.Islands) {
 material.SetColor ("_WaterColor", islandsWaterColor);
 material.SetColor ("_SurfaceColor", islandsSurfaceColor);
 }
 }

 除了海水颜色，海中的山在海面上也有反射和折射，反射和折射效果都是在Shader中实现的，但是在C#中也需要设置参数传给Shader去处理，反射和折射是使用另外的一个相机实现的，其实现的函数如下所示。

 public LayerMask renderLayers = -1;

 void RenderReflectionAndRefraction ()
 {

 Camera renderCamera = Camera.mainCamera;

 Matrix4x4 originalWorldToCam = renderCamera.worldToCameraMatrix;

 int cullingMask = ~(1 << 4) & renderLayers.value;
 Matrix4x4 reflection = Matrix4x4.zero;

 float d = -transform.position.y;
 offscreenCam.backgroundColor = RenderSettings.fogColor;

 CameraHelper.CalculateReflectionMatrix(ref reflection, new Vector4 (0f, 1f, 0f, d));

 offscreenCam.transform.position=reflection.MultiplyPoint (renderCamera.transform.position);
 offscreenCam.transform.rotation = renderCamera.transform.rotation;
 offscreenCam.worldToCameraMatrix = originalWorldToCam * reflection;

 offscreenCam.cullingMask = cullingMask;
 offscreenCam.targetTexture = reflectionTexture;
 GL.SetRevertBackfacing (true);

 Vector4 cameraSpaceClipPlane=CameraHelper.CameraSpacePlane (offscreenCam, new Vector3 (0.0f, transform.position.y, 0.0f), Vector3.up, 1.0f);

 Matrix4x4 projection = renderCamera.projectionMatrix;
 Matrix4x4 obliqueProjection = projection;

 offscreenCam.fieldOfView = renderCamera.fieldOfView;
 offscreenCam.aspect = renderCamera.aspect;

 CameraHelper.CalculateObliqueMatrix (ref obliqueProjection, cameraSpaceClipPlane);

 offscreenCam.projectionMatrix = obliqueProjection;

 if (!renderReflection)
 offscreenCam.cullingMask = 0;

 offscreenCam.Render ();

 GL.SetRevertBackfacing (false);

 offscreenCam.cullingMask = cullingMask;
 offscreenCam.targetTexture = refractionTexture;
 obliqueProjection = projection;

 offscreenCam.transform.position = renderCamera.transform.position;
 offscreenCam.transform.rotation = renderCamera.transform.rotation;
 offscreenCam.worldToCameraMatrix = originalWorldToCam;

 cameraSpaceClipPlane = CameraHelper.CameraSpacePlane (offscreenCam, Vector3.zero, Vector3.up, -1.0f);
 CameraHelper.CalculateObliqueMatrix(refobliqueProjection, cameraSpaceClipPlane);
 offscreenCam.projectionMatrix = obliqueProjection;
 offscreenCam.Render ();

 offscreenCam.projectionMatrix = projection;

 offscreenCam.targetTexture = null;

 }

 上面把海水网格生成的基本功能已实现出来了，最核心的就是要把海水每帧都渲染出来。我们需要将海水的绘制放在Update函数中，Update函数的实现如下所示。

void Update ()
 {
 if(player == null)
 player=
GameObject.FindGameObjectWithTag("Player").GetComponent<Transform>();

 if(sun != null){
 SunDir = sun.transform.forward;
 material.SetVector ("_SunDir", SunDir);
 }

 if (this.renderReflection)
 RenderObject ();

 if (followMainCamera) {

 Vector3 centerOffset;

 centerOffset.x = Mathf.Floor((player.position.x + size.x * 0.5f) * sizeInv.x) * size.x;
 centerOffset.z = Mathf.Floor((player.position.z + size.z * 0.5f) * sizeInv.y) * size.z;
 if(transform.position != centerOffset)
 transform.position = centerOffset;

 }

 float hhalf=height/2f;
 float whalf=width/2f;
 float time=Time.time;
 for (int y = 0; y<height; y++) {
 for (int x = 0; x<width; x++) {
 int idx = width * y + x;
 float yc = y < hhalf ? y : -height + y;
 float xc = x < whalf ? x : -width + x;
 Vector2 vec_k = new Vector2 (2.0f * Mathf.PI * xc / size.x, 2.0f * Mathf.PI * yc / size.z);

 float sqrtMagnitude=(float)System.Math.Sqrt((vec_k.x * vec_k.x) + (vec_k.y * vec_k.y));
 float iwkt = (float)System.Math.Sqrt(9.81f * sqrtMagnitude) * time * speed;
 ComplexF coeffA = new ComplexF ((float)System.Math.Cos(iwkt),
 (float)System.Math.Sin(iwkt));
 ComplexF coeffB;
 coeffB.Re = coeffA.Re;
 coeffB.Im = -coeffA.Im;

 int ny = y > 0 ? height - y : 0;
 int nx = x > 0 ? width - x : 0;

 data [idx] = h0 [idx] * coeffA + h0[width * ny + nx].GetConjugate() * coeffB;

 t_x [idx] = data [idx] * new ComplexF (0.0f, vec_k.x) - data [idx] * vec_k.y;

 if (x + y > 0)
 data [idx] += data [idx] * vec_k.x / sqrtMagnitude;
 }
 }

 Fourier.FFT2 (data, width, height, FourierDirection.Backward);
 Fourier.FFT2 (t_x, width, height, FourierDirection.Backward);

 if (baseHeight == null) {
 baseHeight = baseMesh.vertices;
 vertices = new Vector3[baseHeight.Length];
 normals = new Vector3[baseHeight.Length];
 tangents = new Vector4[baseHeight.Length];
 }

 int wh=width*height;
 float scaleA = choppy_scale / wh;
 float scaleB = scale / wh;
 float scaleBinv = 1.0f / scaleB;

 for (int i=0; i<wh; i++) {
 int iw = i + i / width;
 vertices [iw] = baseHeight [iw];
 vertices [iw].x += data [i].Im * scaleA;
 //vertices[iw].x = data[i].Im * scaleA;
 vertices [iw].y = data [i].Re * scaleB;

 normals [iw] = Vector3.Normalize(new Vector3 (t_x [i].Re, scaleBinv, t_x [i].Im));

 if (((i + 1) % width)==0) {
 int iwi=iw+1;
 int iwidth=i+1-width;
 vertices [iwi] = baseHeight [iwi];
 vertices [iwi].x += data [iwidth].Im * scaleA;
 vertices [iwi].y = data [iwidth].Re * scaleB;

 normals [iwi] = Vector3.Normalize(new Vector3 (t_x [iwidth].Re, scaleBinv, t_x [iwidth].Im));

 }
 }

 int offset = g_width * (g_height - 1);

 for (int i=0; i<g_width; i++) {
 int io=i+offset;
 int mod=i % width;
 vertices [io] = baseHeight [io];
 vertices [io].x += data [mod].Im * scaleA;
 vertices [io].y = data [mod].Re * scaleB;

 normals [io] = Vector3.Normalize(new Vector3 (t_x [mod].Re, scaleBinv, t_x [mod].Im));
 }

 int gwgh=g_width*g_height-1;
 for (int i=0; i<gwgh; i++) {

 if (!reflectionRefractionEnabled) {
 if (((i + 1) % g_width) == 0) {
 tangents [i] = Vector3.Normalize((vertices [i - width + 1] + new Vector3 (size.x, 0.0f, 0.0f) - vertices [i]));
 } else {
 tangents [i] = Vector3.Normalize((vertices [i + 1] - vertices [i]));
 }

 tangents [i].w = 1.0f;
 } else {
 Vector3 tmp;

 if (((i + 1) % g_width) == 0) {
 tmp = Vector3.Normalize(vertices[i - width + 1] + new Vector3 (size.x, 0.0f, 0.0f) - vertices [i]);
 } else {
 tmp = Vector3.Normalize(vertices [i + 1] - vertices [i]);
 }

 tangents [i] = new Vector4 (tmp.x, tmp.y, tmp.z, tangents [i].w);
 }
 }

 if (reflectionRefractionEnabled) {
 for (int y = 0; y < g_height; y++) {
 for (int x = 0; x < g_width; x++) {
 int item=x + g_width * y;
 if (x + 1 >= g_width) {
 tangents [item].w = tangents [g_width * y].w;

 continue;
 }

 if (y + 1 >= g_height) {
 tangents [item].w = tangents [x].w;

 continue;
 }

 float right = vertices[(x + 1) + g_width * y].x - vertices[item].x;

 float foam = right/(size.x / g_width);

 if (foam < 0.0f)
 tangents [item].w = 1f;
 else if (foam < 0.5f)
 tangents [item].w += 3.0f * Time.deltaTime;
 else
 tangents [item].w -= 0.4f * Time.deltaTime;

 if (player != null)
 {
 Vector3 player2Vertex = (player.position - vertices[item] - transform.position);

 if (player2Vertex.x >= size.x)
 player2Vertex.x -= size.x;

 if (player2Vertex.x<= -size.x)
 player2Vertex.x += size.x;

 if (player2Vertex.z >= size.z)
 player2Vertex.z -= size.z;

 if (player2Vertex.z<= -size.z)
 player2Vertex.z += size.z;
 player2Vertex.y = 0;

 if (player2Vertex.sqrMagnitude < wakeDistance * wakeDistance)
 tangents[item].w += 3.0f * Time.deltaTime;
 }

 tangents [item].w = Mathf.Clamp (tangents[item].w, 0.0f, 2.0f);
 }
 }
 }

 tangents [gwgh] = Vector4.Normalize(vertices [gwgh] + new Vector3 (size.x, 0.0f, 0.0f) - vertices [1]);

 for (int L0D=0; L0D<max_LOD; L0D++) {
 int den = (int)System.Math.Pow (2f, L0D);
 int itemcount = (int)((height / den + 1) * (width / den + 1));

 Vector4[] tangentsLOD = new Vector4[itemcount];
 Vector3[] verticesLOD = new Vector3[itemcount];
 Vector3[] normalsLOD = new Vector3[itemcount];

 int idx = 0;

 for (int y=0; y<g_height; y+=den) {
 for (int x=0; x<g_width; x+=den) {
 int idx2 = g_width * y + x;
 verticesLOD [idx] = vertices [idx2];
 tangentsLOD [idx] = tangents [idx2];
 normalsLOD [idx++] = normals [idx2];
 }
 }
 for (int k=0; k< tiles_LOD[L0D].Count; k++) {
 Mesh meshLOD = tiles_LOD [L0D][k];
 meshLOD.vertices = verticesLOD;
 meshLOD.normals = normalsLOD;
 meshLOD.tangents = tangentsLOD;
 }
 }

 }

 这样整个海水绘制的核心代码就实现出来了，当然现在还没有用Shader处理，所以看不到更好的渲染效果，我们会在后面介绍Shader的编写。接下来先介绍一下海水浮力的实现。

 9.5　海水浮力的实现

 以前开发的海战游戏或者虚拟仿真关于浮力的模拟是在物体上增加动画，换句话说，就是事先把放进海里的物体做好骨骼动画，在海中只需要播放动画即可，这样实现的浮力效果不逼真，很僵硬。本节实现的海水浮力是根据海水网格真实的模拟船只浮力效果，在海水中漂浮的物体或者船只都会随着海水的波浪起伏上下浮动，模拟船只上下浮动需要利用海水的网格顶点和物体的刚体Rigibody共同模拟实现浮力效果，完整的代码如下所示。

using UnityEngine;
using System.Collections.Generic;

public class Boyancy : MonoBehaviour
{

 private Ocean ocean;
 private float mag = 1f;
 private float ypos = 0.0f;
 private List<Vector3> blobs;
 private float ax = 2.0f;
 private float ay = 2.0f;
 private float dampCoeff = .2f;
 private bool engine = false;
 public bool sink = false;
 public float sinkForce = 3;
 private List<float> sinkForces;

 void Start ()
 {
 rigidbody.centerOfMass = new Vector3 (0.0f, -0.5f, 0.0f);

 Vector3 bounds = GetComponent<BoxCollider> ().size;
 float length = bounds.z;
 float width = bounds.x;

 blobs = new List<Vector3> ();

 int i = 0;
 float xstep = 1.0f / (ax - 1f);
 float ystep = 1.0f / (ay - 1f);

 sinkForces = new List<float>();

 float totalSink = 0;

 for (int x=0; x<ax; x++) {
 for (int y=0; y<ay; y++) {
 blobs.Add (new Vector3 ((-0.5f + x * xstep) * width, 0.0f, (-0.5f + y * ystep) * length) + Vector3.up * ypos);

 float force = Random.Range(0f,1f);

 force = force * force;

 totalSink += force;

 sinkForces.Add(force);
 i++;
 }
 }

 //标准化浮力
 for (int j=0; j< sinkForces.Count; j++)
 {
 sinkForces[j] = sinkForces[j] / totalSink * sinkForce;
 }

 }

 void OnEnable ()
 {
 if (ocean == null)
 ocean = GameObject.FindGameObjectWithTag ("Ocean").GetComponent<Ocean>();
 }

 void FixedUpdate ()
 {
 int index = 0;

 foreach (Vector3 blob in blobs) {

 Vector3 wpos = transform.TransformPoint (blob);
 float damp = rigidbody.GetPointVelocity (wpos).y;
 Vector3 sinkForce = new Vector3(0,0,0);

 float buyancy = mag * (wpos.y);
 if (ocean.enabled && !sink)
 buyancy = mag * (wpos.y - ocean.GetWaterHeightAtLocation (wpos.x, wpos.z));

 if (sink)
 {
 buyancy = Mathf.Max(buyancy, -3) + sinkForces[index++] ;
 }

 rigidbody.AddForceAtPosition (-Vector3.up * (buyancy + dampCoeff * damp) , w pos);

 }
 }

 public void Sink(bool isActive)
 {
 sink = isActive;
 }

}

 下面把浮力实现的原理给大家介绍一下，通常实现浮力比较简单的方法是在每帧改变网格的y值，因为y轴在世界坐标中是从下到上的，而我们的实现方式不仅仅处理y值而且还加了一个外力，这个外力是加到海水网格上的，因为海浪浮动是无规律的，时而大时而小，相对于力的大小也是不同的，这样实现船只随海水浮动更逼真，实现代码如下所示。

 sinkForces = new List<float>();

 float totalSink = 0;
 for (int x=0; x<ax; x++) {
 for (int y=0; y<ay; y++) {
 blobs.Add (new Vector3 ((-0.5f + x * xstep) * width, 0.0f, (-0.5f + y * ystep) * length) + Vector3.up * ypos);
 float force = Random.Range(0f,1f);

 force = force * force;

 totalSink += force;

 sinkForces.Add(force);
 i++;
 }
 }

 //标准化下沉的力
 for (int j=0; j< sinkForces.Count; j++)
 {
 sinkForces[j] = sinkForces[j] / totalSink * sinkForce;
 }

 由于浮力是随着海水网格的变化而变化的，这种变化是每帧都会执行的。在执行时需要获取海水网格的y值，同时在刚体中加上已经计算好的外力，实现代码如下所示。

 void FixedUpdate ()
 {
 int index = 0;

 foreach (Vector3 blob in blobs) {

 Vector3 wpos = transform.TransformPoint (blob);
 float damp = rigidbody.GetPointVelocity (wpos).y;
 Vector3 sinkForce = new Vector3(0,0,0);

 float buyancy = mag * (wpos.y);
 if (ocean.enabled && !sink)
 buyancy = mag * (wpos.y - ocean.GetWaterHeightAtLocation (wpos.x, wpos.z));

 if (sink)
 {
 buyancy = Mathf.Max(buyancy, -3) + sinkForces[index++] ;
 }

 rigidbody.AddForceAtPosition (-Vector3.up * (buyancy + dampCoeff * damp) , w pos);

 }
 }

 为了优化效率，我使用了FixedUpdate函数，这样可以在固定帧数下更新，把上述已经实现好的代码挂接到Cube的物体上就实现了船只的浮力。接下来把海水的操作界面给大家展示一下，如图9-6所示。

 [image:]
 图9-6　海水浮力脚本挂接

 组件Boyancy.cs的脚本功能是实现海水的浮力，在海水中的效果如图9-7所示。

 [image:]
 图9-7　海水浮力渲染效果

 木块可以随着海浪的滚动上下浮动，效果非常逼真，在木块周围还有使用柏林噪音实现的海水泡沫效果，非常逼真。接下来给大家介绍一下海面的风力实现。

 9.6　海面风力实现

 在大海中航行的船只都会遇到大风大浪，在虚拟环境中要想逼真的仿真出海浪效果也需要去实现风力。由于PC端硬件配置相对移动端高级，所以可以使用各种算法和GPU渲染，图9-8是在PC端实现的海水渲染效果，目前已经应用到了移动端海战虚拟仿真中。

 [image:]
 图9-8　PC端海水渲染效果

 海水效果非常酷炫，而且海浪仿真度非常高，适用于海战仿真和航海模拟等。并且可以实现海浪随风产生一波一波的滚动效果，仿真效果图如图9-9所示。

 [image:]
 图9-9　PC端海浪渲染效果

 以上是在PC端实现的效果，如果在移动端实现就需要换一种方式，比如海面可以采用柏林噪音实现，浪花可以采用特效粒子实现。这样的技术实现相对移动端来说消耗比较少，其完整的风力代码如下所示。

using UnityEngine;
using System.Collections;

[RequireComponent (typeof (Ocean))]
public class Wind : MonoBehaviour {
 public float humidity;
 public float waveScale = 4;
 private Ocean ocean;
 public bool forceStorm = false;

 public float prevValue = 0.1f;
 public float nextValue = 0.4f;
 private float prevTime = 1;
 private const float timeFreq = 1f / 280f;

 IEnumerator Start()
 {
 ocean = gameObject.GetComponent<Ocean>();
 while (true)
 {
 yield return new WaitForEndOfFrame();
 if (forceStorm)
 humidity = 1f;
 else
 humidity = GetHumidity();

 if (ocean != null)
 ocean.SetWaves(Mathf.Lerp(0, waveScale, humidity));
 }
 }

 void ForceStorm(bool force)
 {
 forceStorm = force;
 }

 private float GetHumidity()
 {
 float time = Time.time;
 int intTime = (int)(time * timeFreq);
 int intPrevTime = (int)(prevTime * timeFreq);
 if (intTime != intPrevTime)
 {
 prevValue = nextValue;
 nextValue = Random.value;
 }
 prevTime = time;
 float frac = time * timeFreq - intTime;

 return Mathf.SmoothStep(prevValue, nextValue, frac);
 }
}

 风力是在海水生成功能模块的基础上实现出来的，所以要加[RequireComponent (typeof (Ocean))]，要想实现该效果需要将其脚本挂接到对象上，也就是实现海水的网格对象上。在虚拟世界里面没有真正的风，只能通过海浪的大小衬托出风力的大小。海浪网格波动的大小可以通过插值的方式实现。

ocean.SetWaves(Mathf.Lerp(0, waveScale, humidity));

 为了使风力起作用，需要将该脚本直接挂接到海水的对象上，如图9-10所示。海风对于海水的影响如图9-11所示。

 [image:]
 图9-10　海水与风的脚本挂接效果

 [image:]
 图9-11　海风对于海水的影响

 其实在游戏中做风或者沙尘暴大部分是采用粒子实现的，而本节中海风实现的方式是通过海浪的大小体现的。现实大海中的风暴都会导致海浪翻滚，游戏中也是采用这种方式实现的，并不是真正意义上的风。当然为了丰富效果也使用了特效粒子，效果如图9-12所示。

 [image:]
 图9-12　采用特效粒子来实现风力对海水的影响

 风力的实现讲完了，接下来根据需求去调试海水网格，为了方便开发者设置海水的参数，在9.7节中介绍如何实现可视化操作界面。

 9.7　操作界面

 海水的代码已经编写完了，本节告诉读者如何写一个界面操作的类，该操作界面主要是方便用户可视化操作。对于可视化操作类的实现，脚本需要继承Editor，当然也需要将脚本放到Editor文件夹下面，完整的可视化脚本代码如下所示。

using UnityEngine;
using UnityEditor;
using System.Collections.Generic;

//该类主要是实现了界面化操作

[CustomEditor(typeof(Ocean))]
public class OceanGeneratorInspector : Editor
{

 private bool ElementsExpand = false;

 public override void OnInspectorGUI ()
 {
 EditorGUIUtility.LookLikeControls(80f);
 Ocean ocean = target as Ocean;

 EditorGUILayout.Separator();
 Rect r = EditorGUILayout.BeginVertical();
 EditorGUI.DropShadowLabel(r, "Ocean generator");
 GUILayout.Space(16);
 EditorGUILayout.EndVertical();

 EditorGUILayout.LabelField("Target/Player");
 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Follow");
 GUILayout.Space(-145);
 ocean.followMainCamera = EditorGUILayout.Toggle(ocean.followMainCamera);
 GUILayout.Space(-170);
 ocean.player = (Transform) EditorGUILayout.ObjectField(ocean.player , typeof (Transform),true);
 EditorGUILayout.EndHorizontal();

 EditorGUILayout.LabelField("Ocean material");
 ocean.material = (Material) EditorGUILayout.ObjectField(ocean.material , typ eof(Material),true);

 EditorGUILayout.LabelField("Ocean shader");
 ocean.oceanShader = (Shader) EditorGUILayout.ObjectField(ocean.oceanShader , typeof(Shader),true);

 EditorGUILayout.Separator();

 EditorGUILayout.LabelField("Chunks count");
 ocean.tiles = (int)EditorGUILayout.Slider(ocean.tiles, 1, 9);

 ocean.size = EditorGUILayout.Vector3Field("Chunk size",ocean.size);

 EditorGUILayout.LabelField("Chunk poly count");
 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Width");
 GUILayout.Space(-80);
 ocean.width = EditorGUILayout.IntField(ocean.width);
 EditorGUILayout.LabelField("Height");
 GUILayout.Space(-80);
 ocean.height = EditorGUILayout.IntField(ocean.height);
 EditorGUILayout.EndHorizontal();

 EditorGUILayout.Separator();

 EditorGUILayout.LabelField("Scale");
 ocean.scale = (float)EditorGUILayout.Slider(ocean.scale, 0, 9);

 EditorGUILayout.LabelField("Choppy scale");
 ocean.choppy_scale = (float)EditorGUILayout.Slider(ocean.choppy_scale, 0, 9);

 EditorGUILayout.LabelField("Waves speed");
 ocean.speed = (float)EditorGUILayout.Slider(ocean.speed, 0.1f, 3f);

 EditorGUILayout.LabelField("Wake distance");
 ocean.wakeDistance = (float)EditorGUILayout.Slider(ocean.wakeDistance, 1f, 1 5f);

 EditorGUILayout.Separator();

 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Render reflection");
 GUILayout.Space(-30);
 ocean.renderReflection = EditorGUILayout.Toggle(ocean.renderReflection);
 GUILayout.Space(-30);
 EditorGUILayout.EndHorizontal();

 EditorGUILayout.LabelField("Render textures size");
 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Width");
 GUILayout.Space(-80);
 ocean.renderTexWidth = EditorGUILayout.IntField(ocean.renderTexWidth);
 EditorGUILayout.LabelField("Height");
 GUILayout.Space(-80);
 ocean.renderTexHeight = EditorGUILayout.IntField(ocean.renderTexHeight);
 EditorGUILayout.EndHorizontal();

 EditorGUILayout.BeginHorizontal();
 EditorGUILayout.LabelField("Render layers");
 GUILayout.Space(-100);
 int mask = LayerMaskField(ocean.renderLayers);

 if (ocean.renderLayers != mask)
 {
 ocean.renderLayers = mask;
 }
 EditorGUILayout.EndHorizontal();

 EditorGUILayout.Separator();

 EditorGUILayout.LabelField("Sun transform");
 ocean.sun = (Transform) EditorGUILayout.ObjectField(ocean.sun , typeof(Trans form),true);

 ocean.SunDir = EditorGUILayout.Vector3Field("Sun direction",ocean.SunDir);

 EditorGUILayout.Separator();

 ocean.waterType = (WaterType)EditorGUILayout.EnumPopup("Water type", ocean.w aterType);

 this.ElementsExpand = EditorGUILayout.Foldout(this.ElementsExpand, "Water co lors");
 if(this.ElementsExpand) {
 EditorGUILayout.LabelField("Normal water color");
 ocean.waterColor = EditorGUILayout.ColorField(ocean.waterColor);
 EditorGUILayout.LabelField("Normal water surface color");
 ocean.surfaceColor = EditorGUILayout.ColorField(ocean.surfaceColor);

 EditorGUILayout.LabelField("Ice water color");
 ocean.iceWaterColor = EditorGUILayout.ColorField(ocean.iceWaterColor);
 EditorGUILayout.LabelField("Ice water surface color");
 ocean.iceSurfaceColor = EditorGUILayout.ColorField(ocean.iceSurfaceColor);

 EditorGUILayout.LabelField("Dark water color");
 ocean.darkWaterColor = EditorGUILayout.ColorField(ocean.darkWaterColor);
 EditorGUILayout.LabelField("Dark water surface color");
 ocean.darkSurfaceColor = EditorGUILayout.ColorField(ocean.darkSurfaceCol or);

 EditorGUILayout.LabelField("Islands water color");
 ocean.islandsWaterColor = EditorGUILayout.ColorField(ocean.islandsWaterC olor);
 EditorGUILayout.LabelField("Islands water surface color");
 ocean.islandsSurfaceColor = EditorGUILayout.ColorField(ocean.islandsSurf aceColor);
 }
 EditorGUILayout.Separator();

 if (GUI.changed)
 {
 EditorUtility.SetDirty (ocean);
 }
 }

 public static int LayerMaskField (string label, int mask, params GUILayoutOption[] o ptions)
 {
 List<string> layers = new List<string>();
 List<int> layerNumbers = new List<int>();

 string selectedLayers = "";

 for (int i = 0; i < 32; ++i)
 {
 string layerName = LayerMask.LayerToName(i);

 if (!string.IsNullOrEmpty(layerName))
 {
 if (mask == (mask | (1 << i)))
 {
 if (string.IsNullOrEmpty(selectedLayers))
 {
 selectedLayers = layerName;
 }
 else
 {
 selectedLayers = "Mixed";
 }
 }
 }
 }

 if (Event.current.type != EventType.MouseDown && Event.current.type != EventType .ExecuteCommand)
 {
 if (mask == 0)
 {
 layers.Add("Nothing");
 }
 else if (mask == -1)
 {
 layers.Add("Everything");
 }
 else
 {
 layers.Add(selectedLayers);
 }
 layerNumbers.Add(-1);
 }

 layers.Add((mask == 0 ? "[+] " : " ") + "Nothing");
 layerNumbers.Add(-2);

 layers.Add((mask == -1 ? "[+] " : " ") + "Everything");
 layerNumbers.Add(-3);

 for (int i = 0; i < 32; ++i)
 {
 string layerName = LayerMask.LayerToName(i);

 if (layerName != "")
 {
 if (mask == (mask | (1 << i)))
 {
 layers.Add("[+] " + layerName);
 }
 else
 {
 layers.Add(" " + layerName);
 }
 layerNumbers.Add(i);
 }
 }

 bool preChange = GUI.changed;

 GUI.changed = false;

 int newSelected = 0;

 if (Event.current.type == EventType.MouseDown)
 {
 newSelected = -1;
 }

 if (string.IsNullOrEmpty(label))
 {
 newSelected = EditorGUILayout.Popup(newSelected, layers.ToArray(), EditorSty les.layerMaskField, options);
 }
 else
 {
 newSelected = EditorGUILayout.Popup(label, newSelected, layers.ToArray(), Ed itorStyles.layerMaskField, options);
 }

 if (GUI.changed && newSelected >= 0)
 {
 if (newSelected == 0)
 {
 mask = 0;
 }
 else if (newSelected == 1)
 {
 mask = -1;
 }
 else
 {
 if (mask == (mask | (1 << layerNumbers[newSelected])))
 {
 mask &= ~(1 << layerNumbers[newSelected]);
 }
 else
 {
 mask = mask | (1 << layerNumbers[newSelected]);
 }
 }
 }
 else
 {
 GUI.changed = preChange;
 }
 return mask;
 }

 public static int LayerMaskField (int mask, params GUILayoutOption[] options)
 {
 return LayerMaskField(null, mask, options);
 }
}

 该可视化界面是操作海水参数设置的，所以需要[CustomEditor(typeof(Ocean))]海水组件，因为它的参数是与Ocean脚本参数一致的，最终要调用Ocean脚本里面的变量。参数设置Follow表示海水跟随的对象，因为本章实现的海水是跟着玩家整体变化的，海水跟随的对象一直位于拼接海水网格的正中央，类似九宫格的概念，其效果如图9-13所示。

 [image:]
 图9-13　海水与角色的关系

 下面介绍可视化界面中海水的各个参数的作用。Ocean Material表示的是海水材质，需要将设置好的材质对象拖放到里面，海水材质设置如图9-14所示。

 [image:]
 图9-14　海水的材质设置

 Ocean Shader是海水渲染的Shader，这个会在后面讲解。Chunks Count表示的是设置的网格数量，Chunk Size表示的是网格大小，Chunk Poly Count表示的是每块网格的三角形数量，数量越大网格越精细，反之越粗糙。64 × 64海水网格的效果如图9-15所示。

 [image:]
 图9-15　64×64海水网格的效果

 32×32海水网格的效果如图9-16所示。

 [image:]
 图9-16　32×32海水网格的效果

 通过上面两幅图可以很清楚地看出其网格密度的变化。Scale表示的是海浪大小，在Scale=3时，海浪表现如图9-17所示。

 [image:]
 图9-17　Scale=3海浪效果

 当设置Scale=6时，海浪效果如图9-18所示。

 [image:]
 图9-18　Scale=6海浪效果

 Choppy Scale表示的是柏林噪音的程度，效果如图9-19所示。

 [image:]
 图9-19　海水柏林噪音渲染效果

 Wave Speed表示海浪移动的速度，设置的数值小时，波浪滚动缓慢，效果如图9-20所示。

 [image:]
 图9-20　海浪移动速度渲染效果

 后面就不一一举列了，开发者自己设置参数体验一下就明白了。参数设置界面效果如图9-21所示。

 [image:]
 图9-21　参数设置界面

 开发者设置图9-21的界面就可以很轻松的调试海水效果。海水网格是动态生成的，接下来是很重要的一步——海水的GPU渲染。

 9.8　海水的渲染

 我们已经完成了海水网格的绘制，接下来开始海水的渲染。海水的渲染主要包括海水的反射和折射，海平面的高光和海水中的泡沫，这些渲染效果都会放到GPU中实现，同时也是出于效率优化的考虑。海面泡沫实现采用的算法是柏林噪音，柏林噪音是将噪音的倍频分存到RGBA的4个通道中，然后在像素着色器里面通过输入顶点的位置采样三维纹理得到一个float4四维的值，再将每个通道从这个float4提取出来进行累加，得到一个[0,1]范围的随机值，用这个随机值在两个颜色之间进行插值，得到最终的颜色 ，下面是海水的完整Shader代码。

Shader "Mobile/Ocean"
{
 Properties
 {
 _SurfaceColor ("SurfaceColor", Color) = (1,1,1,1)
 _WaterColor ("WaterColor", Color) = (1,1,1,1)
 _Refraction ("Refraction (RGB)", 2D) = "white" {}
 _Reflection ("Reflection (RGB)", 2D) = "white" {}
 _Fresnel ("Fresnel (A) ", 2D) = "gray" {}
 _Bump ("Bump (RGB)", 2D) = "bump" {}
 _Foam ("Foam (RGB)", 2D) = "white" {}
 _Size ("Size", Vector) = (1, 1, 1, 1)
 _SunDir ("SunDir", Vector) = (0.3, -0.6, -1, 0)
 _SurfaceColorLod1 ("SurfaceColor LOD1", Color) = (1,1,1,0.5)
 _WaterColorLod1 ("WaterColor LOD1", Color) = (1,1,1,0.5)
 _WaterTex ("Water LOD1 (RGB)", 2D) = "white" {}
 }
 SubShader {
 Tags { "Queue"="Transparent" "RenderType"="Transparent" }
 LOD 2
 Pass {
 CGPROGRAM
 #pragma exclude_renderers xbox360
 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"
 struct v2f
 {
 float4 pos : SV_POSITION;
 float4 projTexCoord : TEXCOORD0;
 float2 bumpTexCoord : TEXCOORD1;
 float3 viewDir : TEXCOORD2;
 float3 objSpaceNormal : TEXCOORD3;
 float3 lightDir : TEXCOORD4;
 float2 foamStrengthAndDistance : TEXCOORD5;
 };
 float4 _Size;
 float4 _SunDir;
 v2f vert (appdata_tan v)
 {
 v2f o;
 o.bumpTexCoord.xy = v.vertex.xz/float2(_Size.x, _Size.z)*5;
 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 o.foamStrengthAndDistance.x = v.tangent.w;
 o.foamStrengthAndDistance.y = clamp(o.pos.z, 0, 1.0);
 float4 projSource = float4(v.vertex.x, 0.0, v.vertex.z, 1.0);
 float4 tmpProj = mul(UNITY_MATRIX_MVP, projSource);
 o.projTexCoord = tmpProj;
 float3 objSpaceViewDir = ObjSpaceViewDir(v.vertex);
 float3 binormal = cross(normalize(v.normal), normalize(v.tangent.xyz));
 float3x3 rotation = float3x3(v.tangent.xyz, binormal, v.normal);
 o.objSpaceNormal = v.normal;
 o.viewDir = mul(rotation, objSpaceViewDir);
 o.lightDir = mul(rotation, float3(_SunDir.xyz));
 return o;
 }
 sampler2D _Refraction;
 sampler2D _Reflection;
 sampler2D _Fresnel;
 sampler2D _Bump;
 sampler2D _Foam;
 half4 _SurfaceColor;
 half4 _WaterColor;
 half4 frag (v2f i) : COLOR
 {
 half3 normViewDir = normalize(i.viewDir);
 half4 buv = half4(i.bumpTexCoord.x + _Time.x * 0.03, i.bumpTexCoord.y + _SinTime.x * 0.2, i.bumpTexCoord.x + _Time.y * 0.04, i.bumpTexCoord.y + _SinTime.y * 0.5);
 half3 tangentNormal0 = (tex2D(_Bump, buv.xy).rgb * 2.0) - 1;
 half3 tangentNormal1 = (tex2D(_Bump, buv.zw).rgb * 2.0) - 1;
 half3 tangentNormal = normalize(tangentNormal0 + tangentNormal1);
 float2 projTexCoord = 0.5 * i.projTexCoord.xy * float2(1,_ProjectionParams.x) / i.projTexCoord.w + float2(0.5, 0.5);
 half4 result = half4(0, 0, 0, 1);
 float2 bumpSampleOffset = i.objSpaceNormal.xz * 0.05 + tangentNormal.xy * 0.05;
 half3 reflection = tex2D(_Reflection, projTexCoord.xy + bumpSampleOffset).rgb * _SurfaceColor.rgb;
 half3 refraction = tex2D(_Refraction, projTexCoord.xy + bumpSampleOffset).rgb * _WaterColor.rgb;
 float fresnelLookup = dot(tangentNormal, normViewDir);
 float bias = 0.06;
 float power = 4.0;
 float fresnelTerm = bias + (1.0-bias)*pow(1.0 - fresnelLookup, power);
 float foamStrength = i.foamStrengthAndDistance.x * 1.8;
 half4 foam = clamp(tex2D(_Foam, i.bumpTexCoord.xy * 1.0) - 0.5, 0.0, 1.0) * foamStrength;
 float3 halfVec = normalize(normViewDir - normalize(i.lightDir));
 float specular = pow(max(dot(halfVec, tangentNormal.xyz), 0.0), 250.0);
 result.rgb = lerp(refraction, reflection, fresnelTerm) + clamp(foam.r, 0.0, 1.0) + specular;
 return result;
 }
 ENDCG
 }
 }
 SubShader {
 LOD 1
 Pass {
 Blend One OneMinusSrcAlpha
 CGPROGRAM
 #pragma exclude_renderers xbox360
 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"
 struct v2f
 {
 float4 pos : SV_POSITION;
 float2 bumpTexCoord : TEXCOORD1;
 float3 viewDir : TEXCOORD2;
 float3 objSpaceNormal : TEXCOORD3;
 float3 lightDir : TEXCOORD4;
 float2 foamStrengthAndDistance : TEXCOORD5;
 };
 float4 _Size;
 float4 _SunDir;
 sampler2D _WaterTex;
 v2f vert (appdata_tan v)
 {
 v2f o;
 o.bumpTexCoord.xy = v.vertex.xz/float2(_Size.x, _Size.z)*5;
 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 o.foamStrengthAndDistance.x = v.tangent.w;
 o.foamStrengthAndDistance.y = clamp(o.pos.z, 0, 1.0);
 float4 projSource = float4(v.vertex.x, 0.0, v.vertex.z, 1.0);
 float4 tmpProj = mul(UNITY_MATRIX_MVP, projSource);
 float3 objSpaceViewDir = ObjSpaceViewDir(v.vertex);
 float3 binormal = cross(normalize(v.normal), normalize(v.tangent.xyz));
 float3x3 rotation = float3x3(v.tangent.xyz, binormal, v.normal);
 o.objSpaceNormal = v.normal;
 o.viewDir = mul(rotation, objSpaceViewDir);
 o.lightDir = mul(rotation, float3(_SunDir.xyz));
 return o;
 }
 sampler2D _Fresnel;
 sampler2D _Bump;
 sampler2D _Foam;
 half4 _SurfaceColorLod1;
 half4 _WaterColorLod1;
 half4 frag (v2f i) : COLOR
 {
 half3 normViewDir = normalize(i.viewDir);
 half4 buv = half4(i.bumpTexCoord.x + _Time.x * 0.03, i.bumpTexCoord.y + _SinTime.x * 0.2, i.bumpTexCoord.x + _Time.y * 0.04, i.bumpTexCoord.y + _SinTime.y * 0.5);
 half2 buv2 = half2(i.bumpTexCoord.x - _Time.y * 0.05, i.bumpTexCoord.y);
 half3 tangentNormal0 = (tex2D(_Bump, buv.xy).rgb * 2.0) - 1;
 half3 tangentNormal1 = (tex2D(_Bump, buv.zw).rgb * 2.0) - 1;
 half3 tangentNormal = normalize(tangentNormal0 + tangentNormal1);
 half4 result = half4(0, 0, 0, 1);
 half3 tex = tex2D(_WaterTex, buv2*2) * _WaterColorLod1;
 float fresnelLookup = dot(tangentNormal, normViewDir);
 float bias = 0.06;
 float power = 4.0;
 float fresnelTerm = bias + (1.0-bias)*pow(1.0 - fresnelLookup, power);
 float foamStrength = i.foamStrengthAndDistance.x * 1.8;
 half4 foam = clamp(tex2D(_Foam, i.bumpTexCoord.xy * 1.0) - 0.5, 0.0, 1.0) * foamStrength;
 float3 halfVec = normalize(normViewDir - normalize(i.lightDir));
 float specular = pow(max(dot(halfVec, tangentNormal.xyz), 0.0), 250.0);
 result.rgb = lerp(tex.rgb, _SurfaceColorLod1.rgb, fresnelTerm) + clamp(foam.r, 0.0, 1.0) + specular;
 result.a = .8;
 return result;
 }
 ENDCG
 }
 }
 }

 下面给大家介绍一下该Shader的一些功能说明，在Properties中定义了四张图片，作为海水渲染的输入图片，用于海水梯度的渲染图片对应的值是Fresnel，图片效果如图9-22所示。

 [image:]
 图9-22　海水梯度图片

 海水的高光显示需要法线图片Bump，如图9-23所示。

 [image:]
 图9-23　海水法线图片

 在海中的船只或者物体周围会出现海水泡沫，泡沫的渲染图片对应的是Foam，效果如图9-24所示。

 [image:]
 图9-24　海水泡沫图

 海水的海面LOD显示效果，渲染图片如图9-25所示。

 [image:]
 图9-25　海水LOD图

 使用这四张图片就可以渲染出不同的海水表现，其中海水的反射和折射是实时渲染的。

 该Shader使用的是顶点和片段着色器渲染，Shader中使用了两个SubShader，主要是为了便于适配不同的机型硬件设备，如果有的硬件设备不支持反射和折射渲染，Shader会自己选择第二个SubShader执行，它们的核心算法都是在frag片段着色器中完成的，其核心代码如下。

 half4 frag (v2f i) : COLOR
 {
 half3 normViewDir = normalize(i.viewDir);
 half4 buv = half4(i.bumpTexCoord.x + _Time.x * 0.03, i.bumpTexCoord.y + _SinTime.x * 0.2, i.bumpTexCoord.x + _Time.y * 0.04, i.bumpTexCoord.y + _SinTime.y * 0.5);
 half3 tangentNormal0 = (tex2D(_Bump, buv.xy).rgb * 2.0) - 1;
 half3 tangentNormal1 = (tex2D(_Bump, buv.zw).rgb * 2.0) - 1;
 half3 tangentNormal = normalize(tangentNormal0 + tangentNormal1);
 float2 projTexCoord = 0.5 * i.projTexCoord.xy * float2(1,_ProjectionParams.x) / i.projTexCoord.w + float2(0.5, 0.5);
 half4 result = half4(0, 0, 0, 1);
 float2 bumpSampleOffset = i.objSpaceNormal.xz * 0.05 + tangentNormal.xy * 0.05;
 half3 reflection = tex2D(_Reflection, projTexCoord.xy + bumpSampleOffset).rgb * _SurfaceColor.rgb;
 half3 refraction = tex2D(_Refraction, projTexCoord.xy + bumpSampleOffset).rgb * _WaterColor.rgb;
 float fresnelLookup = dot(tangentNormal, normViewDir);
 float bias = 0.06;
 float power = 4.0;
 float fresnelTerm = bias + (1.0-bias)*pow(1.0 - fresnelLookup, power);
 float foamStrength = i.foamStrengthAndDistance.x * 1.8;
 half4 foam = clamp(tex2D(_Foam, i.bumpTexCoord.xy * 1.0) - 0.5, 0.0, 1.0) * foamStrength;
 float3 halfVec = normalize(normViewDir - normalize(i.lightDir));
 float specular = pow(max(dot(halfVec, tangentNormal.xyz), 0.0), 250.0);
 result.rgb = lerp(refraction, reflection, fresnelTerm) + clamp(foam.r, 0.0, 1.0) + specular;
 return result;
 }

 如果读者想调整海水的反射、折射以及海水表面的泡沫都可以在该函数中进行修改。下面将Shader挂接到材质的效果上，它在Unity中的材质设置如图9-26所示。

 [image:]
 图9-26　海水材质设置

 该材质中的反射和折射纹理是空的，因为反射和折射的纹理是在程序运行时动态生成的，在前面有类似的图已给大家展示过了，把效果图给大家展示一下，海水反射和折射效果如图9-27所示。

 [image:]
 图9-27　海水反射和折射效果

 远处的山、近处的船只在海水中都有反射和折射效果。接下来把海水的网格和Shader组合成一个案例实现出来，同时把它们在海战产品中的应用案例也介绍一下。

 9.9　海水案例分享

 海水实现的整个代码已经写完了，接下来做一个Demo测试一下。首先建一个场景，在场景中放置一个Cube箱子，箱子上面挂接脚本Boyancy.cs和BoxCollider组件以及Rigibody刚体组件，效果如图9-28所示。

 [image:]
 图9-28　设置海水漂浮物体案例展示

 接着开始海水的操作，把海水对象放置到场景里面，具体做法是在场景中建一个空的GameObject，将其名字改成Ocean，把Ocean.cs脚本挂上，如图9-29所示。

 [image:]
 图9-29　设置海水脚本挂接效果

 在这里需要把脚本中的Follow拖到一个指定的对象上面，这样的好处是该海水是以Follow中的对象为中心生成海水网格。换句话说就是设置了海水的许多块，这些海水块的组合是以Cube对象为中心拼接起来的，类似2D游戏的九宫格，接下来需要添加海水的材质，如图9-30所示。

 [image:]
 图9-30　自定义海水材质案例

 将该材质拖放到海水脚本对应的位置上，就是在Ocean可视化界面中有放置材质的位置，同时需要把风的脚本也挂接到海水网格的对象上，这样可以在海水中实现海浪效果，当然必须在场景中加入灯光和摄像机，接下来运行一下，得到如图9-31所示的效果。

 [image:]
 图9-31　海水运行效果

 利用该技术实现了海战游戏开发和海水虚拟仿真，基于该技术做的海战游戏如图9-32所示。

 [image:]
 图9-32　海战游戏渲染效果

 9.10　小结

 在移动端实现的海水技术已经完成了，在使用的过程中，大家首先要了解海水是如何生成的，海水的参数如何设置。在此基础上去研究代码，并且尝试着修改一下，这样能帮助你理解各个函数的作用。学习一门技术先要灵活掌握，然后用海水实现一个简单的海战案例，这样你就能完全掌握海水技术的实现了。

 第10章

 MVC架构设计

 在游戏开发中，我一直想做一个能够适用于大多数游戏开发的万能游戏框架，因此尝试了多种架构模式，最终还是选择了MVC模式用于架构设计。通过几款上线游戏产品的验证，这个框架还是非常不错的，基本可以兼容大部分游戏开发。在这里拿出来和大家分享一下，另外应中软国际“解放号”WE课堂分享的邀请，我分享了《游戏开发万能框架》，也分享了《关于使用MVC架构游戏的思想》，在今日头条有报道，网址是http://toutiao.com/i6312671410862948865/，详细内容可以查看网址http://dwz.cn/3W1uGS，感兴趣的读者可以自学一下。

 MVC在游戏架构设计时经常用到，这也是作为开发者必须要掌握的技能，MVC全称是Model View Controller，中文含义是模型、视口、控制器。它是非常经典的设计模式，已经在游戏设计中广泛运用，尤其是在UI界面架构设计中。MVC在游戏开发中的解释分别是：Model称为模型，它的作用是针对数据变化的，比如在网络游戏中，角色等级升级了，角色的经验值增加了，技能等级提升了等都涉及数据更新，这些都需要用到Model。View，顾名思义是视窗，也就是窗口显示，在游戏的UI中表示的是UI界面的显示。Controller是控制器，控制界面的显示以及数据的更新，比如玩家单击某个按钮的响应操作。MVC架构设计图如图10-1所示。

 [image:]
 图10-1　MVC架构设计图

 Controller模块可以与网络进行对接，用于控制数据Model在View上显示的数据，Controller也可以直接控制与View之间的切换。

 10.1　MVC代码模块设计

 在游戏开发中拿到策划需求后，不要急于编写代码，要先通过模块化架构设计理顺思路。开发者需要拿出时间仔细思考如何去做架构设计，如果只是简单的实现功能它不是产品开发，游戏产品中程序也是一个团队开发公用的，做的框架需要给其他程序员编写逻辑使用，所以前期考虑问题一定要全面。做架构设计时可以把UI架构和游戏玩法架构分别做架构设计，本节主要针对UI做架构设计，运用MVC思想设计UI架构。首先对View模块进行架构设计。众所周知，游戏中UI窗口很多，每个窗口都有一些独特的属性，但是它们也有一些共性。把共性抽离出来可以作为所有窗体的父类使用，后面的窗体逻辑继承于父类即可。View的架构设计如图10-2所示。

 [image:]
 图10-2　窗体模块架构

 以上架构只列举了几个窗体，对于游戏的窗体来说远远不够，但是游戏的窗体的实现原理是一样的。接下来继续在架构上做文章，初步的架构已经设计完成了，但是对于这么多窗体，我们是否还需要一个管理类来对它们进行统一管理呢？答案是肯定的。否则的话，每次编写代码调用每个具体的窗体操作是很麻烦的事情，一旦出现问题查找起来也是比较麻烦的，因此需要设计一个管理类对这些窗体进行统一管理。接下来在图10-2架构的基础上继续完善，增加窗体的管理类，架构如图10-3所示。

 [image:]
 图10-3　窗体管理类架构

 有读者可能会问，架构设计是否完成了？还没有完成，图10-3架构设计的只是关于窗体的模块，还没有将它们联系起来，我们要考虑一个问题就是模块之间的耦合性。降低模块之间的耦合性是很重要的，在游戏开发中经常遇到的问题就是解决模块之间的耦合性，关于解耦合可通过事件机制去处理，接下来先给大家介绍事件代码设计。

 10.2　事件代码实现案例

 事件机制主要用于模块之间解耦合，关于事件的封装在前面有过介绍，在本节封装的是改进版，只用一个文件实现所有事件功能。事件机制将各个模块联系在一起，并且它们之间的耦合性非常低，特别适用于游戏产品的模块化开发。事件的类型可以通过枚举或者字符串的形式表示，本节使用的是枚举。事件机制的实现原理是将表示不同事件的枚举与其对应的回调函数通过AddListener函数加到定义好的表中，触发回调函数通过Broadcast函数对已定义的事件枚举进行分类分发，从而触发已加载到内存的事件回调函数。如果不需要监听事件可通过RemoveListener函数移除监听事件。事件机制实现的完整代码如下所示。

using System;
using System.Collections.Generic;
using UnityEngine;
using Game;
static internal class EventCenter {
#pragma warning disable 0414
#pragma warning restore 0414
 static public Dictionary<EGameEvent, Delegate> mEventTable = new Dictionary<EGameEvent,Delegate>();
 //消息处理程序不应该被移除
 static public List< EGameEvent > mPermanentMessages = new List< EGameEvent > ();
 //做一个永久性标记
 static public void MarkAsPermanent(EGameEvent eventType) {
#if LOG_ALL_MESSAGES
 Debug.Log("Messenger MarkAsPermanent \t\"" + eventType + "\"");
#endif
 mPermanentMessages.Add(eventType);
 }
 static public void Cleanup()
 {
#if LOG_ALL_MESSAGES
 Debug.Log("MESSENGER Cleanup. Make sure that none of necessary listeners are
removed.");
#endif
 List< EGameEvent > messagesToRemove = new List<EGameEvent>();
 foreach (KeyValuePair<EGameEvent, Delegate> pair in mEventTable) {
 bool wasFound = false;
 foreach (EGameEvent message in mPermanentMessages) {
 if (pair.Key == message) {
 wasFound = true;
 break;
 }
 }
 if (!wasFound)
 messagesToRemove.Add(pair.Key);
 }
 foreach (EGameEvent message in messagesToRemove) {
 mEventTable.Remove(message);
 }
 }
 static public void PrEGameEventEventTable()
 {
 foreach (KeyValuePair<EGameEvent, Delegate> pair in mEventTable) {
 Debug.Log("\t\t\t" + pair.Key + "\t\t" + pair.Value);
 }
 Debug.Log("\n");
 }
 static public void OnListenerAdding(EGameEvent eventType, Delegate listenerBeingAdded)
{
 if (!mEventTable.ContainsKey(eventType)) {
 mEventTable.Add(eventType, null);
 }
 Delegate d = mEventTable[eventType];
 if (d != null ＆＆ d.GetType() != listenerBeingAdded.GetType()) {
 throw new ListenerException(string.Format("Attempting to add listener with inconsistent signature for event type {0}. Current listeners have type {1} and listener being added has type {2}", eventType, d.GetType().Name, listenerBeingAdded.GetType().Name));
 }
 }
 static public void OnListenerRemoving(EGameEvent eventType, Delegate listenerBeingRemoved) {
 if (mEventTable.ContainsKey(eventType)) {
 Delegate d = mEventTable[eventType];
 if (d == null) {
 throw new ListenerException(string.Format("Attempting to remove listener with for event type \"{0}\" but current listener is null.", eventType));
 } else if (d.GetType() != listenerBeingRemoved.GetType()) {
 throw new ListenerException(string.Format("Attempting to remove listener with inconsistent signature for event type {0}. Current listeners have type {1} and listener being removed has type {2}", eventType, d.GetType().Name, listenerBeingRemoved.GetType().Name));
 }
 } else {
 throw new ListenerException(string.Format("Attempting to remove listener for type \"{0}\" but Messenger doesn't know about this event type.", eventType));
 }
 }
 static public void OnListenerRemoved(EGameEvent eventType) {
 if (mEventTable[eventType] == null) {
 mEventTable.Remove(eventType);
 }
 }
 static public void OnBroadcasting(EGameEvent eventType) {
#if REQUIRE_LISTENER
 if (!mEventTable.ContainsKey(eventType)) {
 }
#endif
 }
 static public BroadcastException CreateBroadcastSignatureException(EGameEvent eventType)
{
 return new BroadcastException(string.Format("Broadcasting message \"{0}\" but listeners have a different signature than the broadcaster.", eventType));
 }
 public class BroadcastException : Exception {
 public BroadcastException(string msg)
 : base(msg) {
 }
 }
 public class ListenerException : Exception {
 public ListenerException(string msg)
 : base(msg) {
 }
 }
 //无参数增加监听
 static public void AddListener(EGameEvent eventType, Callback handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback)mEventTable[eventType] + handler;
 }
 //单个参数增加监听
 static public void AddListener<T>(EGameEvent eventType, Callback<T> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T>)mEventTable[eventType] + handler;
 }
 //两个参数增加监听
 static public void AddListener<T, U>(EGameEvent eventType, Callback<T, U> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U>)mEventTable[eventType] + handler;
 }
 //三个参数增加监听
 static public void AddListener<T, U, V>(EGameEvent eventType, Callback<T, U, V> handler)
{
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V>)mEventTable[eventType] + handler;
 }
 //四个参数增加监听
 static public void AddListener<T, U, V, X>(EGameEvent eventType, Callback<T, U, V, X> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V, X>)mEventTable[eventType] + handler;
 }
 //无参数移除监听
 static public void RemoveListener(EGameEvent eventType, Callback handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //单个参数移除监听
 static public void RemoveListener<T>(EGameEvent eventType, Callback<T> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //两个参数移除监听
 static public void RemoveListener<T, U>(EGameEvent eventType, Callback<T, U> handler)
{
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //三个参数移除监听
 static public void RemoveListener<T, U, V>(EGameEvent eventType, Callback<T, U, V> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //四个参数移除事件监听
 static public void RemoveListener<T, U, V, X>(EGameEvent eventType, Callback<T, U, V, X> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V, X>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //无参数分发
 static public void Broadcast(EGameEvent eventType) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback callback = d as Callback;
 if (callback != null) {
 callback();
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 static public void SendEvent(CEvent evt)
 {
 Broadcast<CEvent>(evt.GetEventId(), evt);
 }
 //单个参数分发
 static public void Broadcast<T>(EGameEvent eventType, T arg1) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T> callback = d as Callback<T>;
 if (callback != null) {
 callback(arg1);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //两个参数分发
 static public void Broadcast<T, U>(EGameEvent eventType, T arg1, U arg2) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U> callback = d as Callback<T, U>;
 if (callback != null) {
 callback(arg1, arg2);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //三个参数分发
 static public void Broadcast<T, U, V>(EGameEvent eventType, T arg1, U arg2, V arg3) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U, V> callback = d as Callback<T, U, V>;
 if (callback != null) {
 callback(arg1, arg2, arg3);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //四个参数分发
 static public void Broadcast<T, U, V, X>(EGameEvent eventType, T arg1, U arg2, V arg3, X arg4) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U, V, X> callback = d as Callback<T, U, V, X>;
 if (callback != null) {
 callback(arg1, arg2, arg3, arg4);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
}

 整个事件代码已完成，再给大家解释一下代码中的常用接口部分，下面的代码是需要经常调用的监听函数，从无参数的监听函数到有四个参数的监听函数的实现，函数代码如下所示。

 //无参数的监听函数
 static public void AddListener(EGameEvent eventType, Callback handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback)mEventTable[eventType] + handler;
 }
 //一个参数的监听函数
 static public void AddListener<T>(EGameEvent eventType, Callback<T> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T>)mEventTable[eventType] + handler;
 }
 //二个参数的监听函数
 static public void AddListener<T, U>(EGameEvent eventType, Callback<T, U> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U>)mEventTable[eventType] + handler;
 }
 //三个参数的监听函数
 static public void AddListener<T, U, V>(EGameEvent eventType, Callback<T, U, V> handler)
{
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V>)mEventTable[eventType] + handler;
 }
 //四个参数的监听函数
 static public void AddListener<T, U, V, X>(EGameEvent eventType, Callback<T, U, V, X> handler) {
 OnListenerAdding(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V, X>)mEventTable[eventType] + handler;
 }

 可以根据自己的实际情况调用不同的监听函数，下面的代码是移除监听，移除代码的作用是如果事件已经监听完成，且不再需要监听，那么可以通过函数RemoveListener将其移除，它与Addlistener函数是一一对应的，调用函数接口如下。

 //无参数的移除监听函数
 static public void RemoveListener(EGameEvent eventType, Callback handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //单个参数的移除监听函数
 static public void RemoveListener<T>(EGameEvent eventType, Callback<T> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //两个参数的移除监听函数
 static public void RemoveListener<T, U>(EGameEvent eventType, Callback<T, U> handler)
{
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //三个参数的移除监听函数
 static public void RemoveListener<T, U, V>(EGameEvent eventType, Callback<T, U, V> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }
 //四个参数的移除监听函数
 static public void RemoveListener<T, U, V, X>(EGameEvent eventType, Callback<T, U, V,
X> handler) {
 OnListenerRemoving(eventType, handler);
 mEventTable[eventType] = (Callback<T, U, V, X>)mEventTable[eventType] - handler;
 OnListenerRemoved(eventType);
 }

 最后是关于事件的消息分发，也就是触发监听事件的回调函数，先调用监听函数AddListener后，才可以使用Broadcast对事件消息进行分发操作。二者有前后关系，函数代码如下。

 //无参数的消息事件广播函数
 static public void Broadcast(EGameEvent eventType) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback callback = d as Callback;
 if (callback != null) {
 callback();
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //发送事件
 static public void SendEvent(CEvent evt)
 {
 Broadcast<CEvent>(evt.GetEventId(), evt);
 }
 //单个参数的消息事件广播函数
 static public void Broadcast<T>(EGameEvent eventType, T arg1) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T> callback = d as Callback<T>;
 if (callback != null) {
 callback(arg1);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //两个参数的消息事件广播函数
 static public void Broadcast<T, U>(EGameEvent eventType, T arg1, U arg2) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U> callback = d as Callback<T, U>;
 if (callback != null) {
 callback(arg1, arg2);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //三个参数的消息事件广播函数
 static public void Broadcast<T, U, V>(EGameEvent eventType, T arg1, U arg2, V arg3) {
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U, V> callback = d as Callback<T, U, V>;
 if (callback != null) {
 callback(arg1, arg2, arg3);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }
 //四个参数的消息事件广播函数
static public void Broadcast<T, U, V, X>(EGameEvent eventType, T arg1, U arg2, V arg3, X arg4)
{
 OnBroadcasting(eventType);
 Delegate d;
 if (mEventTable.TryGetValue(eventType, out d)) {
 Callback<T, U, V, X> callback = d as Callback<T, U, V, X>;
 if (callback != null) {
 callback(arg1, arg2, arg3, arg4);
 } else {
 throw CreateBroadcastSignatureException(eventType);
 }
 }
 }

 在分发消息的函数中增加了static public void SendEvent(CEvent evt)函数用于消息的发送，它内部是调用BroadCast函数，所以其实现方式与BroadCast原理是一样的，接下来介绍窗体基类的实现案例。

 10.3　窗体基类的实现案例

 对于游戏中的窗体，从它们身上可以看到很多共性，最基本的功能是窗体的初始化、窗体显示、窗体隐藏，这些功能对于所有窗体都是需要的，因此可以将它们抽离出来，单独放到一个类里面作为窗体的父类，游戏中所有的窗体都继承这个父类。窗体父类实现的是所有窗口的共性方法或者属性，子类只负责实现自己独有的方法，共性的方法直接继成父类即可，基类的完整代码如下。

using UnityEngine;
using System.Collections;
using Game;
using GameDefine;
namespace Game.View
{
 public abstract class BaseWindow
 {
 protected Transform mRoot;
 protected EScenesType mScenesType; //场景类型
 protected string mResName; //资源名
 protected bool mResident; //是否常驻
 protected bool mVisible = false; //是否可见
 //类对象初始化
 public abstract void Init();
 //类对象释放
 public abstract void Realse();
 //窗口控制初始化
 protected abstract void InitWidget();
 //窗口控件释放
 protected abstract void RealseWidget();
 //游戏事件注册
 protected abstract void OnAddListener();
 //游戏事件注销
 protected abstract void OnRemoveListener();
 //显示初始化
 public abstract void OnEnable();
 //隐藏处理
 public abstract void OnDisable();
 //每帧更新
 public virtual void Update(float deltaTime) { }
 //取得所有场景类型
 public EScenesType GetScenseType()
 {
 return mScenesType;
 }
 //是否已打开
 public bool IsVisible() { return mVisible; }
 //是否常驻
 public bool IsResident() { return mResident; }
 //显示
 public void Show()
 {
 if (mRoot == null)
 {
 if (Create())
 {
 InitWidget();
 }
 }
 if (mRoot ＆＆ mRoot.gameObject.activeSelf == false)
 {
 mRoot.gameObject.SetActive(true);
 mVisible = true;
 OnEnable();
 OnAddListener();
 }
 }
 //隐藏
 public void Hide()
 {
 if (mRoot ＆＆ mRoot.gameObject.activeSelf == true)
 {
 OnRemoveListener();
 OnDisable();
 if (mResident)
 {
 mRoot.gameObject.SetActive(false);
 }
 else
 {
 RealseWidget();
 Destroy();
 }
 }
 mVisible = false;
 }
 //预加载
 public void PreLoad()
 {
 if (mRoot == null)
 {
 if (Create())
 {
 InitWidget();
 }
 }
 }
 //延时删除
 public void DelayDestory()
 {
 if (mRoot)
 {
 RealseWidget();
 Destroy();
 }
 }
 //创建窗体
 private bool Create()
 {
 if (mRoot)
 {
 Debug.LogError("Window Create Error Exist!");
 return false;
 }
 if (mResName == null || mResName == "")
 {
 Debug.LogError("Window Create Error ResName is empty!");
 return false;
 }
 if (GameMethod.GetUiCamera.transform== null)
 {
 Debug.LogError("Window Create Error GetUiCamera is empty! WindowName = " + mResName);
 return false;
 }
 GameObject obj = LoadUiResource.LoadRes(GameMethod.GetUiCamera.transform,
mResName);
 if (obj == null)
 {
 Debug.LogError("Window Create Error LoadRes WindowName = " + mResName);
 return false;
 }
 mRoot = obj.transform;
 mRoot.gameObject.SetActive(false);
 return true;
 }
 //销毁窗体
 protected void Destroy()
 {
 if (mRoot)
 {
 LoadUiResource.DestroyLoad(mRoot.gameObject);
 mRoot = null;
 }
 }
 //取得根节点
 public Transform GetRoot()
 {
 return mRoot;
 }
 }
}

 在窗体封装的父类代码中，显示函数Show、隐藏函数Hide对于任何窗体都是通用的。因此可以在父类中将其方法实现出来，子类继承该方法可以直接调用，子类无须重新写。当然还有一些公用的函数定义是需要子类自己实现的，父类使用了一些抽象的函数声明，这些抽象函数是针对子类的。先介绍通用函数Show，其作用就是将窗体先创建出来，并对窗体中的控件进行初始化操作，同时增加了消息监听函数的接口。函数代码如下所示。

 //显示
 public void Show()
 {
 if (mRoot == null)
 {
 if (Create())
 {
 InitWidget();
 }
 }
 if (mRoot ＆＆ mRoot.gameObject.activeSelf == false)
 {
 mRoot.gameObject.SetActive(true);
 mVisible = true;
 OnEnable();
 OnAddListener();
 }
 }

 在上文的函数中调用Create函数，用于资源的加载创建，同时将创建的窗体设为不可见，这种处理方式跟预加载机制非常像。该函数实现代码如下所示。

 //创建窗体
 private bool Create()
 {
 if (mRoot)
 {
 Debug.LogError("Window Create Error Exist!");
 return false;
 }
 if (mResName == null || mResName == "")
 {
 Debug.LogError("Window Create Error ResName is empty!");
 return false;
 }
 if (GameMethod.GetUiCamera.transform== null)
 {
 Debug.LogError("Window Create Error GetUiCamera is empty! WindowName = " + mResName);
 return false;
 }
 GameObject obj = LoadUiResource.LoadRes(GameMethod.GetUiCamera.transform, mResName);
 if (obj == null)
 {
 Debug.LogError("Window Create Error LoadRes WindowName = " + mResName);
 return false;
 }
 mRoot = obj.transform;
 mRoot.gameObject.SetActive(false);
 return true;
 }

 下面介绍一下UI界面的隐藏。隐藏分为两种，一种是将其破坏掉，另一种是将其真正隐藏起来。

 //隐藏
 public void Hide()
 {
 if (mRoot ＆＆ mRoot.gameObject.activeSelf == true)
 {
 OnRemoveListener();
 OnDisable();
 if (mResident)
 {
 mRoot.gameObject.SetActive(false);
 }
 else
 {
 RealseWidget();
 Destroy();
 }
 }
 mVisible = false;
 }

 为了方便开发者调用，实现了一个预加载函数，对于一些资源，如果要预先加载到内存里可以调用该函数，函数代码如下所示。

 //预加载
 public void PreLoad()
 {
 if (mRoot == null)
 {
 if (Create())
 {
 InitWidget();
 }
 }
 }

 以上是关于窗体父类核心函数的讲解，窗体父类设计完成，接下来继续窗体子类代码讲解。

 10.4　窗体子类代码实现案例

 为了加深印象，在这里重复一遍父类和子类的关系：“父类窗体实现了所有窗体的共性，子类的实现就需要继承父类，子类自己独有的方法或者属性在其子类中实现”。在写子类之前大家可以思考两个问题，子类的窗体需要有哪些信息？如何去编写子类的代码？这两个问题是架构设计时必须要解决的。

 下面分析一下子类的编写，首先子类窗体是一个assetbundle资源或者说是实例化的物体，这样是为了便于程序动态的加载。资源加载完成后，这个资源是否可以常驻内存，可以为此加个标记，因为有的界面要经常使用，对于这样的界面设计时就要考虑不要将其卸载掉。接下来运用已经封装好的事件系统，以及用于窗体的显示和隐藏接口。另外子类中需要窗体的初始化操作，以及单击按钮时的回调触发函数，因为脚本不继承mono，所以它不会绑定到对象上，这么做的目的是为了做到资源和代码的分离，思路分析完了，现在把完整的代码展示给读者。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using GameDefine;
using UICommon;
using Game;
using Game.GameData;
using Game.Network;
using System.Linq;
using Game.Ctrl;
namespace Game.View
{
 public class LoginWindow : BaseWindow
 {
 public LoginWindow()
 {
 mScenesType = EScenesType.EST_Login;
 mResName = GameConstDefine.LoadGameLoginUI;
 mResident = false;
 }
 ////////////////////////////继承接口/////////////////////////
 //类对象初始化
 public override void Init()
 {
 EventCenter.AddListener(EGameEvent.eGameEvent_LoginEnter, Show);
 EventCenter.AddListener(EGameEvent.eGameEvent_LoginExit, Hide);
 }
 //类对象释放
 public override void Realse()
 {
 EventCenter.RemoveListener(EGameEvent.eGameEvent_LoginEnter, Show);
 EventCenter.RemoveListener(EGameEvent.eGameEvent_LoginExit, Hide);
 }
 //窗口控件初始化
 protected override void InitWidget()
 {
 mLoginParent = mRoot.FindChild("Server_Choose");
 mLoginInput = mRoot.FindChild("Server_Choose/Loginer");
 mLoginSubmit = mRoot.FindChild("Server_Choose/Button");
 mPlayParent = mRoot.Find("LoginBG");
 mPlaySubmitBtn = mRoot.Find("LoginBG/LoginBtn");
 UIEventListener.Get(mPlaySubmitBtn.gameObject).onClick += OnPlaySubmit;
 UIEventListener.Get(mPlayServerBtn.gameObject).onClick += OnPlayServer;
 UIEventListener.Get(mReLoginSubmit.gameObject).onClick += OnReLoginSubmit;
 UIEventListener.Get(mLoginSubmit.gameObject).onClick += OnLoginSubmit;
 }
 //窗口控件释放
 protected override void RealseWidget()
 {
 }
 //游戏事件注册
 protected override void OnAddListener()
 {
 EventCenter.AddListener(EGameEvent.eGameEvent_LoginSuccess, LoginSuceess);
 }
 //游戏事件注销
 protected override void OnRemoveListener()
 {
 EventCenter.RemoveListener(EGameEvent.eGameEvent_LoginSuccess, LoginSuceess);
 }
 //显示
 public override void OnEnable()
 {
 }
 //隐藏
 public override void OnDisable()
 {
 }
 ////////////////////////////////UI事件响应////////////////////////////////////
 void OnPlaySubmit(GameObject go)
 {
 mWaitingParent.gameObject.SetActive(true);
 UIEventListener.Get(mPlaySubmitBtn.gameObject).onClick -= OnPlaySubmit;
 LoginCtrl.Instance.GamePlay();
 }
 void OnPlayServer(GameObject go)
 {
 ShowServer(LOGINUI.SelectServer);
 }
 void OnChangeAccount(GameObject go)
 {
 LoginCtrl.Instance.SdkLogOff();
 }
 void OnReLoginSubmit(GameObject go)
 {
 mReLoginParent.gameObject.SetActive(false);
 LoginCtrl.Instance.SdkLogOff();
 }
 void OnLoginSubmit(GameObject go)
 {
 mWaitingParent.gameObject.SetActive(true);
 LoginCtrl.Instance.Login(mLoginAccountInput.value, mLoginPassInput.value);
 }
 //登录成功
 void LoginSuceess()
 {
 UIEventListener.Get(mPlaySubmitBtn.gameObject).onClick -= OnPlaySubmit;
 }
 }
}

 在LoginWindow类中实现了一些逻辑的调用，大部分都是用封装好的事件机制实现的。下面给大家介绍一下关于代码的实现，构造函数主要实现了资源的加载，以及对是否常驻内存做了一个标记，函数代码如下所示。

 public LoginWindow()
 {
 mScenesType = EScenesType.EST_Login;
 mResName = GameConstDefine.LoadGameLoginUI;
 mResident = false;
 }

 第一行表示的是资源类型，资源类型主要分为两种：Login和Play，使用的是定义好的枚举。

 public enum EScenesType
 {
 EST_None,
 EST_Login,
 EST_Play,
 }

 Init函数主要是实现监听函数功能，它继承于它的父类BaseWindow，添加了监听消息函数AddListener，通过监听函数实现窗体显示Show和隐藏Hide的回调。

 //类对象初始化
 public override void Init()
 {
 EventCenter.AddListener(EGameEvent.eGameEvent_LoginEnter, Show);
 EventCenter.AddListener(EGameEvent.eGameEvent_LoginExit, Hide);
 }

 InitWidget函数主要作用是初始化需要操作界面的各个按钮回调的响应，这样单击界面按钮时会触发响应的回调函数。它继承了父类的InitWidget函数。

 //窗口控件初始化
 protected override void InitWidget()
 {
 mLoginParent = mRoot.FindChild("Server_Choose");
 mLoginInput = mRoot.FindChild("Server_Choose/Loginer");
 mLoginSubmit = mRoot.FindChild("Server_Choose/Button");
 mPlayParent = mRoot.Find("LoginBG");
 mPlaySubmitBtn = mRoot.Find("LoginBG/LoginBtn");
 UIEventListener.Get(mPlaySubmitBtn.gameObject).onClick += OnPlaySubmit;
 UIEventListener.Get(mPlayServerBtn.gameObject).onClick += OnPlayServer;
 UIEventListener.Get(mReLoginSubmit.gameObject).onClick += OnReLoginSubmit;
 UIEventListener.Get(mLoginSubmit.gameObject).onClick += OnLoginSubmit;
 }

 InitWidget函数利用UIEventListener进行窗体Button事件监听，这么做的好处是不需要把脚本挂接到UI上。该函数对应的UI界面如图10-4所示。

 [image:]
 图10-4　UI界面

 如果Login界面不涉及数据的变化处理，则不需要Model模块。子类窗体的实现都可以采用上述脚本的实现方式，这里就不一一举例了，其他窗体按照这个模式编写就可以了，接下来开始MVC模式的Controller模块编写。

 10.5　控制类实现案例

 本节讲解MVC中的Controller控制类设计，控制类是负责控制View窗体显示的，它的控制方式是通过消息事件的监听和分发实现的，这也有效地降低了模块之间的耦合性，它的实现方式是继承单例模式，它不继承mono，所以不会挂接到对象上，先把完整的代码给大家展示一下。

using UnityEngine;
using System;
using System.Collections;
using Game;
using Game.GameData;
using Game.Network;
using System.IO;
using System.Linq;
using Game.Model;
namespace Game.Ctrl
{
 public class LoginCtrl : Singleton<LoginCtrl>
 {
 public void Enter()
 {
 EventCenter.Broadcast(EGameEvent.eGameEvent_LoginEnter);
 }
 public void Exit()
 {
 EventCenter.Broadcast(EGameEvent.eGameEvent_LoginExit);
 }
 //登录
 public void Login(string account, string pass)
 {
 SelectServerData.Instance.SetServerInfo((int)SdkManager.Instance.GetPlatFrom(), account, pass);
 NetworkManager.Instance.canReconnect = false;
 NetworkManager.Instance.Close();
 NetworkManager.Instance.Init(GameLogic.Instance.LoginServerAdress, 49996, NetworkManager.ServerType.LoginServer);
 }
 //登录错误反馈
 public void LoginError(int code)
 {
 MsgInfoManager.Instance.ShowMsg(code);
 EventCenter.Broadcast<EErrorCode>(EGameEvent.eGameEvent_LoginError, (EErrorCode)code);
 }
 //登录失败
 public void LoginFail()
 {
 NetworkManager.Instance.canReconnect = false;
 EventCenter.Broadcast(EGameEvent.eGameEvent_LoginFail);
 }
 //开始游戏
 public void GamePlay()
 {
 }
 }
}

 在该函数中读者可能注意到，它的分发消息是在Enter函数中，移除消息监听是在Exit函数中，因为它不继承mono，所以必须有其他类来调用Controller控制模块的方法才能运行。那如何去调用Controller控制类呢？请看第10.6节状态类设计实现。

 10.6　状态类设计实现

 第10.5节讲述了MVC中的View和Controller模块都不继承于mono，方便扩展，接下来设计的状态切换模式也是不继承mono的，用于View窗体的切换。下面开始状态模式的框架设计，首先设计一个状态的父类，这个父类将其定义为一个抽象类。抽象类架构设计如图10-5所示。

 [image:]
 图10-5　游戏抽象类架构设计

 图10-5中iGameState作为所有状态的父类，状态模式是设计模式中的一种，它是根据物体状态的改变而改变的行为，所以在设计父类时，需要考虑到以下几点：设置某个状态，获取某个状态，进入某个状态，状态更新，状态停止，等等。

using UnityEngine;
using System.Collections;
namespace Game.GameState
{
 public interface IGameState
 {
 GameStateType GetStateType();
 void SetStateTo(GameStateType gsType);
 void Enter();
 GameStateType Update(float fDeltaTime);
 void FixedUpdate(float fixedDeltaTime);
 void Exit();
 }
}

 父类有了以后，接下来开始设计子类。以LoginState为例，LoginState是登录窗体的具体状态，它继承上述写的父类，状态主要是通过MVC中的Controller去控制窗体的显示，完整的代码如下所示。

using UnityEngine;
using System.Collections;
using GameDefine;
using Game.Resource;
using Game.Ctrl;
namespace Game.GameState
{
 class LoginState : IGameState
 {
 GameStateType stateTo;
 GameObject mScenesRoot;
 GameObject mUIRoot;
 public LoginState()
 {
 }
 public GameStateType GetStateType()
 {
 return GameStateType.GS_Login;
 }
 public void SetStateTo(GameStateType gs)
 {
 stateTo = gs;
 }
 public void Enter()
 {
 SetStateTo(GameStateType.GS_Continue);
 ResourceUnit sceneRootUnit = ResourcesManager.Instance.loadImmediate(GameConstDefine.GameLogin, ResourceType.PREFAB);
 mScenesRoot = GameObject.Instantiate(sceneRootUnit.Asset) as GameObject;
 LoginCtrl.Instance.Enter();
 ResourceUnit audioClipUnit = ResourcesManager.Instance.loadImmediate(AudioDefine.PATH_UIBGSOUND, ResourceType.ASSET);
AudioClip clip = audioClipUnit.Asset as AudioClip;
 AudioManager.Instance.PlayBgAudio(clip);
 EventCenter.AddListener<CEvent>(EGameEvent.eGameEvent_InputUserData, OnEvent);
 EventCenter.AddListener<CEvent>(EGameEvent.eGameEvent_IntoLobby, OnEvent);
 }
 public void Exit()
 {
 EventCenter.RemoveListener<CEvent>(EGameEvent.eGameEvent_InputUserData,
OnEvent);
 EventCenter.RemoveListener<CEvent>(EGameEvent.eGameEvent_IntoLobby, OnEvent);
 LoginCtrl.Instance.Exit();
 GameObject.DestroyImmediate(mScenesRoot);
 }
 public void FixedUpdate(float fixedDeltaTime)
 {
 }
 public GameStateType Update(float fDeltaTime)
 {
 return stateTo;
 }
 public void OnEvent(CEvent evt)
 {
 UIPlayMovie.PlayMovie("cg.mp4", Color.black, 2/*
FullScreenMovieControlMode.Hidden*/, 3/*FullScreenMovieScalingMode.Fill*/);
 switch (evt.GetEventId())
 {
 case EGameEvent.eGameEvent_InputUserData:
 SetStateTo(GameStateType.GS_User);
 break;
 case EGameEvent.eGameEvent_IntoLobby:
GameStateManager.Instance.ChangeGameStateTo(GameStateType.GS_Lobby);
 break;
 }
 }
 }
}

 我把类中的主要函数给读者介绍一下。在该类中使用了Enter函数的定义，在设计Controller时也定义了一个函数Enter，该函数在该类中具有非常重要的作用，它实现的内容包括：设置当前状态，调用Controller的Enter接口显示View层的UI，因为View层的UI显示面板需要将其实例化出来。面板的实例化也是在State状态类中去实现的，同时也可以包括声音、音效的加载以及其他逻辑的实现，函数代码如下。

public void Enter()
 {
 SetStateTo(GameStateType.GS_Continue);
 ResourceUnit sceneRootUnit = ResourcesManager.Instance.loadImmediate(GameConstDefine.GameLogin, ResourceType.PREFAB);
 mScenesRoot = GameObject.Instantiate(sceneRootUnit.Asset) as GameObject;
 //调用Controller控制类的Enter函数
 LoginCtrl.Instance.Enter();
 ResourceUnit audioClipUnit = ResourcesManager.Instance.loadImmediate(AudioDefine.PATH_UIBGSOUND, ResourceType.ASSET);
 AudioClip clip = audioClipUnit.Asset as AudioClip;
 AudioManager.Instance.PlayBgAudio(clip);
 EventCenter.AddListener<CEvent>(EGameEvent.eGameEvent_InputUserData, OnEvent);
 EventCenter.AddListener<CEvent>(EGameEvent.eGameEvent_IntoLobby, OnEvent);
 }

 通过类的继承关系知道，它也不是继承mono的，所以它有自己的构造函数，它继承了父类的Enter函数。这个函数主要是处理状态的改变，以及将窗体的实例化，同时调用MVC的Controller模块中的Enter函数进行View窗体的显示。当然从逻辑上说在该函数中可以添加事件的监听。前面已经提过State没有继承mono，所以它不能挂到对象上直接使用。它调用与它相关的类挂到对象上，每个窗体都有自己的State状态，这么多状态也需要一个状态管理类去管理控制，下面实现GameStateManager类的设计。其架构设计和上面讲述的窗体设计的管理类类似，这里就不展示架构图了，先把完整的代码实现写出来。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
namespace Game.GameState
{
 public enum GameStateType
 {
 GS_Continue,
 GS_Login,
 GS_User,
 GS_Lobby,
 GS_Room,
 GS_Hero,
 GS_Loading,
 GS_Play,
 GS_Over,
 }
 public class GameStateManager : Singleton<GameStateManager>
 {
 Dictionary<GameStateType, IGameState> gameStates;
 IGameState currentState;
 public GameStateManager()
 {
 gameStates = new Dictionary<GameStateType, IGameState>();
 IGameState gameState;
 gameState = new LoginState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new UserState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new LobbyState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new RoomState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new HeroState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new LoadingState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new PlayState();
 gameStates.Add(gameState.GetStateType(), gameState);
 gameState = new OverState();
 gameStates.Add(gameState.GetStateType(), gameState);
 }
 public IGameState GetCurState()
 {
 return currentState;
 }
 public void ChangeGameStateTo(GameStateType stateType)
 {
 if(currentState!=null＆＆currentState.GetStateType()!= GameStateType.GS_Loading ＆＆ currentState.GetStateType() == stateType)
 return;
 if (gameStates.ContainsKey(stateType))
 {
 if (currentState != null)
 {
 currentState.Exit();
 }
 currentState = gameStates[stateType];
 currentState.Enter();
 }
 }
 public void EnterDefaultState()
 {
 ChangeGameStateTo(GameStateType.GS_Login);
 }
 public void FixedUpdate(float fixedDeltaTime)
 {
 if (currentState != null)
 {
 currentState.FixedUpdate(fixedDeltaTime);
 }
 }
 public void Update(float fDeltaTime)
 {
 GameStateType nextStateType = GameStateType.GS_Continue;
 if (currentState != null)
 {
 nextStateType = currentState.Update(fDeltaTime);
 }
 if (nextStateType > GameStateType.GS_Continue)
 {
 ChangeGameStateTo(nextStateType);
 }
 }
 public IGameState getState(GameStateType type)
 {
 if (!gameStates.ContainsKey(type))
 {
 return null;
 }
 return gameStates[type];
 }
 }
}

 通过上面代码可以看出，状态管理类的实现功能通过枚举变量public enum GameStateType，把游戏中涉及的所有状态列出来，状态的变换是通过设置的枚举值作为标记实现的。状态管理类首先要做的是把所有的状态在管理类的构造函数中加入到字典Dictionary中，便于统一管理。声明语句如下所示。

Dictionary<GameStateType, IGameState> gameStates;

 在构造函数public GameStateManager()中将所有的状态存储到已声明的字典中便于读取。在该类中最重要的函数是：public void ChangeGameStateTo(GameStateType stateType)，这个是对外提供的，可以单独使用，也可以在函数public voidupdate(float timeDelta)中去设置。该函数的主要作用是改变游戏状态，它也是状态管理类中最重要的函数。

 public void ChangeGameStateTo(GameStateType stateType)
 {
 if(currentState!=null＆＆currentState.GetStateType()!= GameStateType.GS_Loading ＆＆ currentState.GetStateType() == stateType)
 return;
 if (gameStates.ContainsKey(stateType))
 {
 if (currentState != null)
 {
 currentState.Exit();
 }
 currentState = gameStates[stateType];
 currentState.Enter();
 }
 }

 该函数在窗口切换中非常重要，凡是涉及状态变换都要调用这个函数，这样就为逻辑实现了统一的接口调用，下面开始窗体管理类的案例讲解。

 10.7　窗体管理类实现案例

 窗体管理类的主要作用是管理游戏页面中的所有UI面板。在现实生活中，买汽车都要到车辆管理所登记，方便对车进行管理，将其思想应用到程序里面就是所有在游戏中使用的UI都要在窗体管理类中注册。当然管理类不只是负责注册，游戏UI要互相切换，编写逻辑不能把UI之间的切换写死，要有个关于UI切换的统一流程，这样才能真正地实现切换功能。下面把窗口管理类完整的代码给大家展示一下。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Game;
using Game.GameState;
namespace Game.View
{
 public enum EScenesType
 {
 EST_None,
 EST_Login,
 EST_Play,
 }
 public enum EWindowType
 {
 EWT_LoginWindow, //登录
 EWT_UserWindow, //用户
 EWT_LobbyWindow,
 EWT_BattleWindow,
 EWT_RoomWindow,
 EWT_HeroWindow,
 EWT_BattleInfoWindow,
 EWT_MarketWindow,
 EWT_MarketHeroListWindow,
 EWT_MarketHeroInfoWindow,
 EWT_MarketRuneListWindow,
 EWT_MarketRuneInfoWindow,
 EWT_SocialWindow,
 EWT_GamePlayWindow,
 EWT_InviteWindow,
 EWT_ChatTaskWindow,
 EWT_ScoreWindow,
 EWT_InviteAddRoomWindow,
 EWT_RoomInviteWindow,
 EWT_TeamMatchWindow,
 EWT_TeamMatchInvitationWindow,
 EWT_TeamMatchSearchingWindow,
 EWT_MailWindow,
 EWT_HomePageWindow,
 EWT_PresonInfoWindow,
 EWT_ServerMatchInvitationWindow,
 EWT_SoleSoldierWindow,
 EWT_MessageWindow,
 EWT_MiniMapWindow,
 EWT_VIPPrerogativeWindow,
 EWT_RuneEquipWindow,
 EWT_DaliyBonusWindow,
 EWT_EquipmentWindow,
 EWT_SystemNoticeWindow,
 EWT_TimeDownWindow,
 EWT_RuneCombineWindow,
 EWT_HeroDatumWindow,
 EWT_RuneRefreshWindow,
 EWT_GamePlayGuideWindow,
 EMT_PurchaseSuccessWindow,
 EMT_GameSettingWindow,
 EMT_AdvancedGuideWindow,
 EMT_ExtraBonusWindow,
 EMT_EnemyWindow,
 EMT_HeroTimeLimitWindow,
 EMT_SkillWindow,
 EMT_SkillDescribleWindow,
 EMT_RuneBuyWindow,
 EMT_DeathWindow,
 }
 public class WindowManager : Singleton<WindowManager>
 {
 public WindowManager()
 {
 mWidowDic = new Dictionary<EWindowType, BaseWindow>();
 mWidowDic[EWindowType.EWT_LoginWindow] = new LoginWindow();
 mWidowDic[EWindowType.EWT_UserWindow] = new UserInfoWindow();
 mWidowDic[EWindowType.EWT_LobbyWindow] = new LobbyWindow();
 mWidowDic[EWindowType.EWT_BattleWindow] = new BattleWindow();
 mWidowDic[EWindowType.EWT_RoomWindow] = new RoomWindow();
 mWidowDic[EWindowType.EWT_HeroWindow] = new HeroWindow();
 mWidowDic[EWindowType.EWT_BattleInfoWindow] = new BattleInfoWindow();
 mWidowDic[EWindowType.EWT_MarketWindow] = new MarketWindow();
 mWidowDic[EWindowType.EWT_MarketHeroListWindow] = new MarketHeroListWindow();
 mWidowDic[EWindowType.EWT_MarketHeroInfoWindow] = new MarketHeroInfoWindow();
 mWidowDic[EWindowType.EWT_SocialWindow] = new SocialWindow();
 mWidowDic[EWindowType.EWT_GamePlayWindow] = new GamePlayWindow();
 mWidowDic[EWindowType.EWT_InviteWindow] = new InviteWindow();
 mWidowDic[EWindowType.EWT_ChatTaskWindow] = new ChatTaskWindow();
 mWidowDic[EWindowType.EWT_ScoreWindow] = new ScoreWindow();
 mWidowDic[EWindowType.EWT_InviteAddRoomWindow] = new InviteAddRoomWindow();
 mWidowDic[EWindowType.EWT_RoomInviteWindow] = new RoomInviteWindow();
 mWidowDic[EWindowType.EWT_TeamMatchWindow] = new TeamMatchWindow();
 mWidowDic[EWindowType.EWT_TeamMatchInvitationWindow] = new TeamMatchInvitationWindow();
 mWidowDic[EWindowType.EWT_TeamMatchSearchingWindow] = new TeamMatchSearchingWindow();
 mWidowDic[EWindowType.EWT_MailWindow] = new MailWindow();
 mWidowDic[EWindowType.EWT_HomePageWindow] = new HomePageWindow();
 mWidowDic[EWindowType.EWT_PresonInfoWindow] = new PresonInfoWindow();
 mWidowDic[EWindowType.EWT_ServerMatchInvitationWindow] = new ServerMatchInvitationWindow();
 mWidowDic[EWindowType.EWT_SoleSoldierWindow] = new SoleSoldierWindow();
 mWidowDic[EWindowType.EWT_MessageWindow] = new MessageWindow();
 mWidowDic[EWindowType.EWT_MarketRuneListWindow] = new MarketRuneListWindow();
 mWidowDic[EWindowType.EWT_MiniMapWindow] = new MiniMapWindow();
 mWidowDic[EWindowType.EWT_MarketRuneInfoWindow] = new MarketRuneInfoWindow();
 mWidowDic[EWindowType.EWT_VIPPrerogativeWindow] = new VIPPrerogativeWindow();
 mWidowDic[EWindowType.EWT_RuneEquipWindow] = new RuneEquipWindow();
 mWidowDic[EWindowType.EWT_DaliyBonusWindow] = new DaliyBonusWindow();
 mWidowDic[EWindowType.EWT_EquipmentWindow] = new EquipmentWindow();
 mWidowDic[EWindowType.EWT_SystemNoticeWindow] = new SystemNoticeWindow();
 mWidowDic[EWindowType.EWT_TimeDownWindow] = new TimeDownWindow();
 mWidowDic[EWindowType.EWT_RuneCombineWindow] = new RuneCombineWindow();
 mWidowDic[EWindowType.EWT_HeroDatumWindow] = new HeroDatumWindow();
 mWidowDic[EWindowType.EWT_RuneRefreshWindow] = new RuneRefreshWindow();
 mWidowDic[EWindowType.EWT_GamePlayGuideWindow] = new GamePlayGuideWindow();
 mWidowDic[EWindowType.EMT_PurchaseSuccessWindow] = new PurchaseSuccessWindow();
 mWidowDic[EWindowType.EMT_GameSettingWindow] = new GameSettingWindow();
 mWidowDic[EWindowType.EMT_AdvancedGuideWindow] = new AdvancedGuideWindow();
 mWidowDic[EWindowType.EMT_ExtraBonusWindow] = new ExtraBonusWindow();
 mWidowDic[EWindowType.EMT_EnemyWindow] = new EnemyWindow();
 mWidowDic[EWindowType.EMT_HeroTimeLimitWindow] = new HeroTimeLimitWindow();
 mWidowDic[EWindowType.EMT_SkillWindow] = new SkillWindow();
 mWidowDic[EWindowType.EMT_SkillDescribleWindow] = new SkillDescribleWindow();
 mWidowDic[EWindowType.EMT_RuneBuyWindow] = new RuneBuyWindow();
 mWidowDic[EWindowType.EMT_DeathWindow] = new DeathWindow();
 }
 public BaseWindow GetWindow(EWindowType type)
 {
 if (mWidowDic.ContainsKey(type))
 return mWidowDic[type];
 return null;
 }
 public void Update(float deltaTime)
 {
 foreach (BaseWindow pWindow in mWidowDic.Values)
 {
 if (pWindow.IsVisible())
 {
 pWindow.Update(deltaTime);
 }
 }
 }
 public void ChangeScenseToPlay(EScenesType front)
 {
 foreach (BaseWindow pWindow in mWidowDic.Values)
 {
 if (pWindow.GetScenseType() == EScenesType.EST_Play)
 {
 pWindow.Init();
 if(pWindow.IsResident())
 {
 pWindow.PreLoad();
 }
 }
 else if ((pWindow.GetScenseType() == EScenesType.EST_Login) ＆＆ (front == EScenesType.EST_Login))
 {
 pWindow.Hide();
 pWindow.Realse();
 if (pWindow.IsResident())
 {
 pWindow.DelayDestory();
 }
 }
 }
 }
 public void ChangeScenseToLogin(EScenesType front)
 {
 foreach (BaseWindow pWindow in mWidowDic.Values)
 {
 if (front == EScenesType.EST_None ＆＆ pWindow.GetScenseType() == EScenesType.EST_None)
 {
 pWindow.Init();
 if (pWindow.IsResident())
 {
 pWindow.PreLoad();
 }
 }
 if (pWindow.GetScenseType() == EScenesType.EST_Login)
 {
 pWindow.Init();
 if (pWindow.IsResident())
 {
 pWindow.PreLoad();
 }
 }
 else if ((pWindow.GetScenseType() == EScenesType.EST_Play) ＆＆ (front == EScenesType.EST_Play))
 {
 pWindow.Hide();
 pWindow.Realse();
 if (pWindow.IsResident())
 {
 pWindow.DelayDestory();
 }
 }
 }
 }
 /// <summary>
 /// 隐藏所有的窗体
 /// </summary>
 /// <param name="front"></param>
 public void HideAllWindow(EScenesType front)
 {
 foreach (var item in mWidowDic)
 {
 if (front == item.Value.GetScenseType())
 {
 Debug.Log(item.Key);
 item.Value.Hide();
 //item.Value.Realse();
 }
 }
 }
 public void ShowWindowOfType(EWindowType type)
 {
 BaseWindow window;
 if(!mWidowDic.TryGetValue(type , out window))
 {
 return;
 }
 window.Show();
 }
 private Dictionary<EWindowType, BaseWindow> mWidowDic;
 }
}

 窗体管理类的实现思路和状态管理类的实现思路类似，也需要先通过枚举把所有的窗体列出来，然后把窗体在已经定义好的字典Dictionary中注册，并且提供了获取某个窗体函数public BaseWindow GetWindow(EWindowType type)和场景跳转函数接口public void ChangeScense ToPlay(EScenesType front)以及场景跳转到UI函数接口public void ChangeScenseToLogin (EScenesType front)，因为在游戏中我们只设计了登录场景login和游戏场景play，所以提供这两个接口就可以实现场景之间的跳转。两个跳转函数功能类似，下面我们以ChangeSceneToPlay为例，将其函数实现内容给大家展示一下。

public void ChangeScenseToPlay(EScenesType front)
 {
 foreach (BaseWindow pWindow in mWidowDic.Values)
 {
 if (pWindow.GetScenseType() == EScenesType.EST_Play)
 {
 pWindow.Init();
 if(pWindow.IsResident())
 {
 pWindow.PreLoad();
 }
 }
 else if ((pWindow.GetScenseType() == EScenesType.EST_Login) ＆＆ (front == EScenesType.EST_Login))
 {
 pWindow.Hide();
 pWindow.Realse();
 if (pWindow.IsResident())
 {
 pWindow.DelayDestory();
 }
 }
 }
 }

 该函数实现了窗体的初始化、窗体的更新、窗体的隐藏、窗体的破坏等功能，这样关于MVC的架构设计到此就全部讲完了，接下来通过案例的方式告诉大家怎么去使用它。

 10.8　MVC案例分享

 首先需要把用到的UI资源做好，UI界面使用的是NGUI。如果使用UGUI，那么原理也是一样的。案例中只做了三个界面之间的切换，来应用MVC框架。首先要做的是实时检测State状态的改变，这需要将其代码放置到Update函数中，该脚本需要挂接到对象上，我们可以自己编写一个继承mono的脚本，直接挂到对象上，并且该对象不被销毁，函数代码如下所示。

 void Update ()
 {
 //更新游戏状态机
 GameStateManager.Instance.Update(Time.deltaTime);
 //UI更新
 WindowManager.Instance.Update(Time.deltaTime);
 }

 在Awake函数和Start函数中要设置默认的状态函数，也就是说首先切换场景，然后设置默认状态，代码如下所示。

void Awake()
{
 WindowManager.Instance.ChangeScenseToLogin(EScenesType.EST_None);
}
void Start()
{
 GameStateManager.Instance.EnterDefaultState();
}

 用NGUI建三个面板窗口并将它们实例化出来，效果如图10-6所示。

 [image:]
 图10-6　UI实例化面板

 这些实例化的UI是可以动态加载创建出来的，接下来就可以直接运行程序，动态加载的代码大家可以自己去实现，UI的第一个面板是登录面板，效果如图10-7所示。

 [image:]
 图10-7　UI登录面板

 UI的第二个面板是创建角色面板，效果如图10-8所示。

 [image:]
 图10-8　UI创建角色面板

 UI的第三个面板是创建关卡面板，界面效果如图10-9所示。

 [image:]
 图10-9　UI关卡面板

 利用该架构实现了界面的搭建以及各个界面之间的切换功能。如果大家还有不懂的地方可以去泰课教育在线看我的视频课程《Unity 3D MOBA游戏泰斗英雄联盟》，在该课程中有对本章知识的详细讲解，并提供了客户端和服务器的代码，非常方便。

 10.9　小结

 MVC对于UI的架构设计是非常方便的，我已经在多款游戏中使用证明该架构设计对大部分游戏来说都是适用的。当然任何事情都不是绝对的，希望该架构能对开发者有所启发，并在未来能够做出更适合团队开发的架构系统。

 第11章

 FSM有限状态机在游戏中的运用

 FSM全称是Finite State Machine，中文称为有限状态机，在游戏开发中应用非常广泛。它的修饰词Finite是有限的意思，运用FSM解决问题的前提条件是“有限”个状态。在游戏中经常使用它处理状态转化程序逻辑，尤其在动作游戏中，比如在ARPG游戏和运动类休闲游戏中，角色的动作会有不同的动作状态变换，比如idle-＞walk-＞run-＞attack-＞idle等。在使用FSM编程之前，先把FSM架构设计图介绍一下，如图11-1所示。

 [image:]
 图11-1　FSM架构设计图

 图11-1架构的最顶部FSM模块是所有状态的基类，所有子类都需要继承该类，FSMState类是定义状态的枚举，这些枚举变量与子类的有限状态机是一一对应的，也就是最底层所具体实现状态实体的逻辑。下面根据FSM架构图逐一实现它们的类编写工作，首先设计一下FSM基类。

 11.1　FSM基类设计

 有限状态机一定要有状态的定义。状态定义可以使用枚举或者是字符串，在二选一的情况下，我倾向于选择枚举，因为这样程序操作起来更方便，当然程序员各有所爱。表示状态变化的枚举代码如下所示。

namespace Game.FSM
{
 public enum FsmState
 {
 FSM_STATE_FREE,
 FSM_STATE_RUN,
 FSM_STATE_SING,
 FSM_STATE_RELEASE,
 FSM_STATE_LEADING,
 FSM_STATE_LASTING,
 FSM_STATE_DEAD,
 FSM_STATE_ADMOVE,
 FSM_STATE_FORCEMOVE,
 FSM_STATE_RELIVE,
 FSM_STATE_IDLE,
 }
}

 定义了枚举FsmState ，枚举值包括了游戏中定义角色的大部分状态，比如：FSM_STATE_RUN跑步状态、FSM_STATE_DEAD死亡状态等，还可以继续添加所需要的角色状态。下面开始设计基类代码。

namespace Game.FSM
{
 using UnityEngine;
 using Game.GameEntity;
 using System.Collections;
 public interface EntityFSM
 {
 bool CanNotStateChange{set;get;}
 FsmState State { get; }
 void Enter(Ientity entity , float stateLast);
 bool StateChange(Ientity entity , EntityFSM state);
 void Execute(Ientity entity);
 void Exit(Ientity Ientity);
 }
}

 上面的代码相对来说比较简单，代码量非常少。在FSM基类中，定义Enter函数表示的是进入状态，StateChange函数表示的是状态改变，Execute函数表示的是状态执行，Exit函数表示的是状态停止。眼尖的读者注意到它们的参数是Ientity。Ientity类非常重要，后面会给大家详细介绍。现在父类已经设计完成了，下面开始设计子类。

 11.2　子类设计

 有限状态机子类是根据具体的动作实体设计的，拆分每个动作单独作为一个状态实体类。从前面的FSM架构图中可以看出，每个子类都有自己的逻辑方法和属性，子类的共性在父类中已经定义了，在子类中只需实现而已，下面把子类的代码给大家展现一下。

namespace Game.FSM
{
 using Game.GameEntity;
 using UnityEngine;
 public class EntityIdleFSM : EntityFSM
 {
 public static readonly EntityFSM Instance = new EntityIdleFSM();
 public FsmState State
 {
 get
 {
 return FsmState.FSM_STATE_IDLE;
 }
 }
 public bool CanNotStateChange{
 set;get;
 }
 public bool StateChange(Ientity entity , EntityFSM fsm)
 {
 return CanNotStateChange;
 }
 public void Enter(Ientity entity , float last)
 {
 entity.OnEnterIdle();
 }
 public void Execute(Ientity entity)
 {
 if (EntityStrategyHelper.IsTick(entity, 3.0f))
 {
 entity.OnFSMStateChange(EntityFreeFSM.Instance);
 }
 }
 public void Exit(Ientity entity){
 }
 }
}

 在子类文件中，它继承了父类的Enter、Execute、Exit函数，这些都是FSM通用的方法。这些函数的参数都有Ientity类，设计Ientity类的目的是对角色状态的切换做统一接口处理。它不仅实现了FSM的状态切换接口，同时也包含实体的一些基本功能函数，比如重生、复活、技能释放等，Ientity类是FSM的驱动类，由于该类包含的功能比较多，下面把Ientity类的实现给大家展示一下。

 11.3　实体类设计

 Ientity实体类是每个FSM子类都需要使用的，实体状态之间的转换需要通过实体类Ientity类去操作。为了统一管理，将FSM的状态转换放到了Ientity类中，当然也可以单独拿出来进行处理。Ientity类的核心代码是FSM的状态转换，它封装了统一的转换接口供角色不同的动作状态切换，Ientity类核心代码如下所示。

public class Ientity
{
/// <summary>
 /// 状态改变
 /// </summary>
 /// <param name="fsm"></param>
 /// <param name="last"></param>
 public void OnFSMStateChange(EntityFSM fsm, float last)
 {
 if (this.FSM != null ＆＆ this.FSM.StateChange(this, fsm))
 {
 return;
 }
 if (this.FSM == fsm ＆＆ this.FSM != null ＆＆ this.FSM.State == FsmState.FSM_STATE_DEAD)
 {
 return;
 }
 if (this.FSM != null)
 {
 this.FSM.Exit(this);
 }
 if (this.FSM != null)
 this.RealEntity.FSMStateName = fsm.ToString();
 this.FSM = fsm;
 StrategyTick = Time.time;
 this.FSM.Enter(this, last);
 }
 public void OnFSMStateChange(EntityFSM fsm)
 {
 if (this.FSM != null ＆＆ this.FSM.StateChange(this, fsm))
 {
 return;
 }
 if (this.FSM == fsm ＆＆ this.FSM != null ＆＆ (this.FSM.State == FsmState.FSM_STATE_DEAD))
 {
 return;
 }
 if (this.FSM != null)
 {
 this.FSM.Exit(this);
 }
 this.FSM = fsm;
 if (this.FSM != null)
 this.RealEntity.FSMStateName = fsm.ToString();
 StrategyTick = Time.time;
 this.FSM.Enter(this, 0.0f);
 }
}

 在Ientity类中实现了两个重载函数，一个函数是public void OnFSMStateChange(EntityFSM fsm, float last)，另一个函数是public void OnFSMStateChange(EntityFSM fsm)。

 如果需要做状态变换，直接调用这两个函数中的一个即可实现状态切换。此外，在开发中也将技能作为状态变换的一个子类处理。下面给大家介绍一下技能子类，当然技能子类也可以作为技能系统去单独处理，这里介绍的目的是可以将FSM完全用于游戏玩法的架构设计。

 11.4　技能子类

 游戏中的玩家或者NPC都会释放技能，技能对于FSM来说也是一种状态的改变。游戏中的实时同步也是与状态有关系的。注意，架构没有好坏之分，开发者用着方便就是一个好的架构设计。用着方便包括两方面：一是根据需求可以随意扩展，二是代码模块之间的耦合性比较低，技能子类的代码如下所示。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using Game.GameData;
using MO.MOBA.Tools;
namespace Game.FSM
{
 using Game.GameEntity;
 public class EntityReleaseSkillFSM : EntityFSM
 {
 public static readonly EntityFSM Instance = new EntityReleaseSkillFSM();
 public FsmState State{
 get
 {
 return FsmState.FSM_STATE_RELEASE;
 }
 }
 public bool CanNotStateChange{
 set;get;
 }
 public bool StateChange(Ientity entity , EntityFSM fsm){
 return CanNotStateChange;
 }
 public void Enter(Ientity entity , float last){
 entity.OnEntityReleaseSkill();
 }
 public void Execute(Ientity entity){
 entity.OnEntityPrepareAttack ();
 }
 public void Exit(Ientity entity){
 }
 }
}

 技能子类的处理方式跟上面实现的实体子类类似，在这里介绍一下函数的功能，Enter函数执行的是技能释放，Execute函数执行的是攻击准备。这样FSM整个系统就完成了，其他子类读者按照这个模式照猫画虎就可以了，下面通过案例的方式讲解一下如何在游戏中使用FSM有限状态机。

 11.5　游戏案例分享

 前几节实现了FSM有限状态机的架构设计，同时利用该思想设计了很多的实体FSM，用于不同动作或者不同技能之间的转换，在这里限于篇幅就不给大家一一列举定义子类的FSM了，它们的书写方式都是类似的。下面给大家展示一下游戏中使用FSM设计的类，首先将编写的FSM代码统一放在Unity项目下的FSM文件夹下面，效果如图11-2所示。

 [image:]
 图11-2　FSM脚本

 在使用时，可以通过调用Ientity类中的函数进行状态切换。调用函数举例如下。

 OnFSMStateChange(Game.FSM.EntityIdleFSM.Instance);

 该函数已在封装的Ientity类中给出，在这里提供了不同的动作状态，通过配置文件去配置操作，这也是策划的需求。游戏开发是数据驱动的，程序的设计架构、文本文件的读取也要在设计时考虑到，这样策划可以根据需求配置文件内容。程序加载读取文件内容并将它们显示出来，配置文件的XML文件内容如图11-3所示。

 [image:]
 图11-3　配置动作文本文件

 在XML文件中有n2RandomAttack字段，这个字段的内容表示的是角色动作名字，配置表配置的三个动作名字分别是：attack、attack2、attack3。本案例使用的是老动画系统，如果是新的动画系统可以用触发条件表示不同状态切换，它们的原理是一样的。老动画系统的参考设置如图11-4所示。

 [image:]
 图11-4　老动画系统的参数设置

 本章的技术已经应用到了实际项目开发中，程序员在使用该架构时总体感觉还是不错的。我利用FSM有限状态机开发的游戏有Moba游戏、MMOARPG游戏，以及一些休闲类游戏，并且有成功上线运营的产品，其游戏场景如图11-5所示。

 [image:]
 图11-5　利用FSM制作的游戏显示效果

 如果大家想系统学习也可以访问我在泰课在线教育的视频讲座——《Moba网络游戏》，网址是http://www.taikr.com/course/282，可以在该网站上下载到完整的游戏代码。

 11.6　小结

 以前做游戏架构设计时，开发MMORPG网络游戏时没有使用FSM有限状态机，所有的战斗技能都是在一个类里面封装的，导致后期扩展非常麻烦，所以我痛定思痛把架构重新调成FSM 有限状态机架构，虽然花费了一些时间，但是后期开发非常快。一个好的游戏架构是非常重要的。

 第12章

 移动端热更新技术实现

 热更新在当前移动端游戏开发中使用的非常广泛，有的读者可能对热更新的含义不是很清楚，在这里给大家解释一下：热更新主要体现在一个“热”字上，其含义就是在不改变原包的基础上进行功能更新。在玩游戏时，对于第一次安装的包不需要替换，直接在旧包的基础上更新功能，换句话说就是资源和逻辑一起更新。在现今移动端开发中，实现该功能主要使用的有ulua、slua以及动态库等，其中使用最多的是ulua，网上有这方面的开源代码库，本章也是在参考它的基础上实现的架构，具体请查看网址ulua.org，许多开发者都是在此框架基础上开发的，本章介绍的内容也是基于该框架的。

 有的读者可能会问：如果计费SDK更新怎么办呢？因为各个渠道的SDK经常更新，这个需要程序事先将其编译成jar包，然后放到Unity的Plugins文件夹下面，便于C＃脚本调用其接口。对于SDK的更新只能使用强更新策略，就是让用户重新安装新的客户端，以前UMeng使用过增量更新，它的原理是通过比较旧包和新包包体的大小找出之间的差异，然后安装差异的部分，但这不属于热更新，但是大家还是要了解增量更新的实现原理。下面从热更新的架构开始说起。

 12.1　热更新架构设计

 在实现热更新之前，首先要知道其实现原理。为了让读者更好的理解，我介绍一下热更新的思路：热更新要更新资源和代码逻辑，首先在程序运行时把资源和代码都从资源服务器上下载下来，这里要提醒一下，并不是每次程序启动都要把资源和代码从资源服务器上下载下来，而是要通过配置文件对比，找出要下载的文件，决定下载最新的资源和脚本文件。这就需要一个对比配置文件，此文件在本地要保存一份，与服务器上下载到的文件进行对比，找出不同的资源和脚本代码，把对应的资源和代码下载下来。下载的资源文件也要覆盖掉本地的资源文件，或者是删除本地的再下载新的。本地配置文件和服务器上的配置文件对比是通过md5码或者版本号，在这里是通过md5码对比实现的。为了方便读者理解，我把配置文件的内容给大家展示一下，如图12-1所示。

 [image:]
 图12-1　配置文件

 图12-1中每行“|”竖线把配置文件分割成两部分：前半部分是需要做热更新的资源或者Lua脚本，后半部分是生成的md5值，用于区分资源，如果资源有所改动，md5值是不同的。这个配置文件是通过工具生成的，热更新的框架设计如图12-2所示。

 [image:]
 图12-2　热更新的框架设计

 图12-2也是热更新的流程：客户端程序启动，首先去资源服务器上把远程的文本文件下载到本地，这个是用Http协议实现下载的。从服务器上下载的配置文件与本地同名的文本文件逐行做比较，如果发现某行对应的md5编码不一样，说明md5编码对应的资源或者脚本逻辑发生了改变，需要从服务器上把对应的资源或者逻辑代码下载到本地，同时把本地的同名文件删除，这样就完成了资源的更新。当然如果发生平台SDK升级这样的事情，就需要强制更新客户端，就是在客户端启动时，服务器会发消息给客户端，提示客户端强制更新对话框，如果单击“是”，重新下载安装客户端，当然也可以采用增量更新的方式。如果单击“否”，则退出程序，导致程序无法启动，这就是所说的强制更新功能。接下来首先实现远程和本地的文本文件，这需要借助资源打包工具实现。

 12.2　资源打包工具的开发

 资源打包在游戏开发中经常用到，把对象先做成实例化，然后将其打包成assetbundle。将打包好的assetbundle放到资源服务器上以供下载，资源服务器的配置带宽需要注意，一般带宽要做到10～100M，视访问的人数而定，最好使用有DNS缓存的硬件服务器。在本章中不仅实现了资源的更新，也实现了逻辑的更新。为了让开发者使用方便，使用资源工具将资源和代码打包，打包工具功能分为三部分：第一部分是打包成assetbundle并将其复制到指定的文件夹下面，用于模拟资源服务器测试；第二部分是将逻辑脚本复制到与assetbundle同样的目录下面；第三部分是将assetbundle和脚本文件一起做md5加密，便于文件热更新时通过该文件做比对，决定下载哪个资源。完整的代码如下所示。

using UnityEditor;
using UnityEngine;
using System.IO;
using System.Text;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using BIEFramework;
public class Packager {
 public static string platform = string.Empty;
 static List<string> paths = new List<string>();
 static List<string> files = new List<string>();
 /// <summary>
 /// 载入素材
 /// </summary>
 static UnityEngine.Object LoadAsset(string file) {
 if (file.EndsWith(".lua")) file += ".txt";
 return AssetDatabase.LoadMainAssetAtPath("Assets/Builds/" + file);
 }
 //在iPhone平台编译iPhone资源
 [MenuItem("Game/Build iPhone Resource", false, 11)]
 public static void BuildiPhoneResource() {
 BuildTarget target;
 target = BuildTarget.iOS;
 BuildAssetResource(target, false);
 }
 //在Android平台编译Android资源
 [MenuItem("Game/Build Android Resource", false, 12)]
 public static void BuildAndroidResource() {
 BuildAssetResource(BuildTarget.Android, true);
 }
 //在Windows平台编译Windows资源
 [MenuItem("Game/Build Windows Resource", false, 13)]
 public static void BuildWindowsResource() {
 BuildAssetResource(BuildTarget.StandaloneWindows, true);
 }
 /// <summary>
 /// 生成绑定素材
 /// </summary>
 public static void BuildAssetResource(BuildTarget target, bool isWin) {
 string dataPath = Util.DataPath;
 if (Directory.Exists(dataPath)) {
 Directory.Delete(dataPath, true);
 }
 string assetfile = string.Empty; //素材文件名
 string resPath = AppDataPath + "/" + AppConst.AssetDirname + "/";
 if (!Directory.Exists(resPath)) Directory.CreateDirectory(resPath);
 if (AppConst.ExampleMode) {
 BuildPipeline.BuildAssetBundles(resPath, BuildAssetBundleOptions.None, target);
 }
 string luaPath = resPath + "/lua/";
 //----------复制Lua文件----------------
 if (Directory.Exists(luaPath)) {
 Directory.Delete(luaPath, true);
 }
 Directory.CreateDirectory(luaPath);
 paths.Clear(); files.Clear();
 string luaDataPath = Application.dataPath + "/lua/".ToLower();
 Recursive(luaDataPath);
 int n = 0;
 foreach (string f in files) {
 if (f.EndsWith(".meta")) continue;
 string newfile = f.Replace(luaDataPath, "");
 string newpath = luaPath + newfile;
 string path = Path.GetDirectoryName(newpath);
 if (!Directory.Exists(path)) Directory.CreateDirectory(path);
 if (File.Exists(newpath)) {
 File.Delete(newpath);
 }
 if (AppConst.LuaEncode) {
 UpdateProgress(n++, files.Count, newpath);
 EncodeLuaFile(f, newpath, isWin);
 } else {
 File.Copy(f, newpath, true);
 }
 }
 EditorUtility.ClearProgressBar();
 ///----------------------创建文件列表-----------------------
 string newFilePath = resPath + "/files.txt";
 if (File.Exists(newFilePath)) File.Delete(newFilePath);
 paths.Clear(); files.Clear();
 Recursive(resPath);
 FileStream fs = new FileStream(newFilePath, FileMode.CreateNew);
 StreamWriter sw = new StreamWriter(fs);
 for (int i = 0; i < files.Count; i++) {
 string file = files[i];
 string ext = Path.GetExtension(file);
 if (file.EndsWith(".meta") || file.Contains(".DS_Store")) continue;
 string md5 = Util.md5file(file);
 string value = file.Replace(resPath, string.Empty);
 sw.WriteLine(value + "|" + md5);
 }
 sw.Close(); fs.Close();
 AssetDatabase.Refresh();
 }
 /// <summary>
 /// 数据目录
 /// </summary>
 static string AppDataPath {
 get { return Application.dataPath.ToLower(); }
 }
 /// <summary>
 /// 遍历目录及其子目录
 /// </summary>
 static void Recursive(string path) {
 string[] names = Directory.GetFiles(path);
 string[] dirs = Directory.GetDirectories(path);
 foreach (string filename in names) {
 string ext = Path.GetExtension(filename);
 if (ext.Equals(".meta")) continue;
 files.Add(filename.Replace('\\', '/'));
 }
 foreach (string dir in dirs) {
 paths.Add(dir.Replace('\\', '/'));
 Recursive(dir);
 }
 }
 static void UpdateProgress(int progress, int progressMax, string desc) {
 string title = "Processing...[" + progress + " - " + progressMax + "]";
 float value = (float)progress / (float)progressMax;
 EditorUtility.DisplayProgressBar(title, desc, value);
 }
 static void EncodeLuaFile(string srcFile, string outFile, bool isWin) {
 if (!srcFile.ToLower().EndsWith(".lua")) {
 File.Copy(srcFile, outFile, true);
 return;
 }
 string luaexe = string.Empty;
 string args = string.Empty;
 string exedir = string.Empty;
 string currDir = Directory.GetCurrentDirectory();
 if (Application.platform == RuntimePlatform.WindowsEditor) {
 luaexe = "luajit.exe";
 args = "-b " + srcFile + " " + outFile;
 exedir = AppDataPath.Replace("assets", "") + "LuaEncoder/luajit/";
 } else if (Application.platform == RuntimePlatform.OSXEditor) {
 luaexe = "./luac";
 args = "-o " + outFile + " " + srcFile;
 exedir = AppDataPath.Replace("assets", "") + "LuaEncoder/luavm/";
 }
 Directory.SetCurrentDirectory(exedir);
 ProcessStartInfo info = new ProcessStartInfo();
 info.FileName = luaexe;
 info.Arguments = args;
 info.WindowStyle = ProcessWindowStyle.Hidden;
 info.UseShellExecute = isWin;
 info.ErrorDialog = true;
 Util.Log(info.FileName + " " + info.Arguments);
 Process pro = Process.Start(info);
 pro.WaitForExit();
 Directory.SetCurrentDirectory(currDir);
 }

 打包工具实现了针对Windows平台、iPhone平台、Android平台的三种打包方式。主要功能是在BuildAssetResource函数中实现的，将上述脚本文件放到Assets->Editor文件夹下面，效果如图12-3所示。

 [image:]
 图12-3　制作工具脚本在Unity中显示

 这样会在Unity的工具栏里出现Game菜单，如图12-4所示。

 [image:]
 图12-4　制作工具在菜单中显示

 对文件md5加密的代码模块如下所示。

string newFilePath = resPath + "/files.txt";
 if (File.Exists(newFilePath)) File.Delete(newFilePath);
 paths.Clear(); files.Clear();
 Recursive(resPath);
 FileStream fs = new FileStream(newFilePath, FileMode.CreateNew);
 StreamWriter sw = new StreamWriter(fs);
 for (int i = 0; i < files.Count; i++) {
 string file = files[i];
 string ext = Path.GetExtension(file);
 if (file.EndsWith(".meta") || file.Contains(".DS_Store")) continue;
 string md5 = Util.md5file(file);
 string value = file.Replace(resPath, string.Empty);
 sw.WriteLine(value + "|" + md5);
 }
 sw.Close(); fs.Close();
 AssetDatabase.Refresh();

 配置文件的名字是file.txt，用md5加密代码编写。

 string md5 = Util.md5file(file);
 string value = file.Replace(resPath, string.Empty);
 sw.WriteLine(value + "|" + md5);

 并将其保存到已定义的配置文件file.txt中，资源和md5码之间用“|”表示。

 根据游戏包所在平台选择不同的工具打包方式，对应的资源会在StreamingAssets文件夹下面看到，这个目录可以自己修改，这么做的原因是为了模拟资源服务器下载。

 12.3　C＃与Lua接口相互结合

 C#是Unity的脚本语言，而Lua又是C#的脚本语言，换句话说就是脚本套脚本。我们面临的第一个问题就是如何用Lua调用C#的接口函数，因为需要做热更新的代码逻辑是用Lua写的，这需要在Lua中调用C#的接口函数，因为iOS并不支持反射机制，反射是低效的，而众多热更新方案都在拼命地反射，以此来提升效率。反射也要掌握一个度，这就要求在程序运行时，Lua通过查询C#对象的类信息，获取里面类成员变量和成员函数，然后Lua逻辑调用C#的数据与方法。实现这个调用功能需要通过工具生成Lua能够调用的C#脚本文件，因为并不是所有的C#脚本都要提供接口给Lua调用，因此要对C#脚本文件有所取舍。这些C#脚本中函数是要在程序运行时加入到Lua的Table表中的，要注意并不是加载到Table里面的函数越多越好，也要考虑到内存的消耗。在编写工具之前需要把ulua源文件放到Unity的Assets文件夹下面，如图12-5所示。

 [image:]
 图12-5　ulua脚本

 接下来开始写代码，首先将需要Lua调用的C#的接口在文件中指定好，完整代码如下所示。

using UnityEngine;
using System;
using System.Collections;
using BIEFramework;
using BIEFramework.Manager;
using UnityEngine.UI;
using UnityEngine.Events;
public static class WrapFile {
 public static BindType[] binds = new BindType[]
 {
 _GT(typeof(object)),
 _GT(typeof(System.String)),
 _GT(typeof(System.Enum)),
 _GT(typeof(IEnumerator)),
 _GT(typeof(System.Delegate)),
 _GT(typeof(Type)).SetBaseName("System.Object"),
 _GT(typeof(UnityEngine.Object)),
 //自定义类
 _GT(typeof(WWW)),
 _GT(typeof(Debugger)),
 _GT(typeof(Util)),
 _GT(typeof(AppConst)),
 _GT(typeof(ByteBuffer)),
 _GT(typeof(ResourceManager)),
 _GT(typeof(PanelManager)),
 _GT(typeof(TimerManager)),
 _GT(typeof(MusicManager)),
 _GT(typeof(LuaHelper)),
 _GT(typeof(LuaBehaviour)),
 _GT(typeof(RectTransform)),
 _GT(typeof(DelegateFactory)),
 _GT(typeof(TestLuaDelegate)),
 _GT(typeof(TestDelegateListener)),
 _GT(typeof(TestEventListener)),
 _GT(typeof(Button)),
 _GT(typeof(Button.ButtonClickedEvent)),
 _GT(typeof(UnityEventBase)),
 _GT(typeof(UnityEvent)),
 //unity自带的类
 _GT(typeof(Component)),
 _GT(typeof(Behaviour)),
 _GT(typeof(MonoBehaviour)),
 _GT(typeof(GameObject)),
 _GT(typeof(Transform)),
 _GT(typeof(Space)),
 _GT(typeof(Camera)),
 _GT(typeof(CameraClearFlags)),
 _GT(typeof(Material)),
 _GT(typeof(Renderer)),
 _GT(typeof(MeshRenderer)),
 _GT(typeof(SkinnedMeshRenderer)),
 _GT(typeof(Light)),
 _GT(typeof(LightType)),
 _GT(typeof(ParticleEmitter)),
 _GT(typeof(ParticleRenderer)),
 _GT(typeof(ParticleAnimator)),
 _GT(typeof(Physics)),
 _GT(typeof(Collider)),
 _GT(typeof(BoxCollider)),
 _GT(typeof(MeshCollider)),
 _GT(typeof(SphereCollider)),
 _GT(typeof(CharacterController)),
 _GT(typeof(Animation)),
 _GT(typeof(AnimationClip)).SetBaseName("UnityEngine.Object"),
 _GT(typeof(TrackedReference)),
 _GT(typeof(AnimationState)),
 _GT(typeof(QueueMode)),
 _GT(typeof(PlayMode)),
 _GT(typeof(AudioClip)),
 _GT(typeof(AudioSource)),
 _GT(typeof(Application)),
 _GT(typeof(Input)),
 _GT(typeof(TouchPhase)),
 _GT(typeof(KeyCode)),
 _GT(typeof(Screen)),
 _GT(typeof(Time)),
 _GT(typeof(RenderSettings)),
 _GT(typeof(SleepTimeout)),
 _GT(typeof(AsyncOperation)).SetBaseName("System.Object"),
 _GT(typeof(AssetBundle)),
 _GT(typeof(BlendWeights)),
 _GT(typeof(QualitySettings)),
 _GT(typeof(AnimationBlendMode)),
 _GT(typeof(Texture)),
 _GT(typeof(RenderTexture)),
 _GT(typeof(ParticleSystem)),
 _GT(typeof(Text)),
 };
 public static BindType _GT(Type t) {
 return new BindType(t);
 }
}

 在这里把脚本给读者介绍一下，如果需要Lua调用某个文件中的接口函数，就用_GT函数在public static BindType[] binds = new BindType[]下面添加。例如，代码中的 _GT(typeof(Panel Manager))的含义是提供了供Lua调用的C#接口，通过工具最终会生成wrap的cs文件，后面会介绍关于如何生成wrap文件。

 接下来需要写工具调用BindType数组，也就是生成cs文件。当Lua虚拟机启动时会调用这个Bind方法，使其在luavm也就是Lua虚拟机中注册相应的Table，并且将里面的字段、方法等信息添加进去，这样Lua就可以访问C#类中的接口了。

using UnityEngine;
using UnityEditor;
using System;
using System.Collections;
using Object = UnityEngine.Object;
using System.Text;
using System.IO;
using System.Runtime.InteropServices;
using System.Collections.Generic;
using System.Text.RegularExpressions;
using System.Reflection;
using UnityEngine.Rendering;
using BIEFramework;
public class BindType {
 public string name; //类名称
 public Type type;
 public bool IsStatic;
 public string baseName = null; //继承的类名字
 public string wrapName = ""; //产生的wrap文件名字
 public string libName = ""; //注册到Lua的名字
 string GetTypeStr(Type t) {
 string str = t.ToString();
 if (t.IsGenericType) {
 str = GetGenericName(t);
 } else if (str.Contains("+")) {
 str = str.Replace('+', '.');
 }
 return str;
 }
 private static string[] GetGenericName(Type[] types) {
 string[] results = new string[types.Length];
 for (int i = 0; i < types.Length; i++) {
 if (types[i].IsGenericType) {
 results[i] = GetGenericName(types[i]);
 } else {
 results[i] = ToLuaExport.GetTypeStr(types[i]);
 }
 }
 return results;
 }
 private static string GetGenericName(Type type) {
 if (type.GetGenericArguments().Length == 0) {
 return type.Name;
 }
 Type[] gArgs = type.GetGenericArguments();
 string typeName = type.Name;
 string pureTypeName = typeName.Substring(0, typeName.IndexOf('`'));
 return pureTypeName + "<" + string.Join(",", GetGenericName(gArgs)) + ">";
 }
 public BindType(Type t) {
 type = t;
 name = ToLuaExport.GetTypeStr(t);
 if (t.IsGenericType) {
 libName = ToLuaExport.GetGenericLibName(t);
 wrapName = ToLuaExport.GetGenericLibName(t);
 } else {
 libName = t.FullName.Replace("+", ".");
 wrapName = name.Replace('.', '_');
 if (name == "object") {
 wrapName = "System_Object";
 }
 }
 if (t.BaseType != null) {
 baseName = ToLuaExport.GetTypeStr(t.BaseType);
 if (baseName == "ValueType") {
 baseName = null;
 }
 }
 if (t.GetConstructor(Type.EmptyTypes) == null ＆＆ t.IsAbstract ＆＆ t.IsSealed) {
 baseName = null;
 IsStatic = true;
 }
 }
 public BindType SetBaseName(string str) {
 baseName = str;
 return this;
 }
 public BindType SetWrapName(string str) {
 wrapName = str;
 return this;
 }
 public BindType SetLibName(string str) {
 libName = str;
 return this;
 }
}
[InitializeOnLoad]
public static class LuaBinding
{
 static bool beAutoGen = false;
 //产生Lua的warp文件
 [MenuItem("Lua/Gen Lua Wrap Files", false, 11)]
 public static void Binding()
 {
 if (!Application.isPlaying)
 {
 EditorApplication.isPlaying = true;
 }
 BindType[] list = WrapFile.binds;
 for (int i = 0; i < list.Length; i++)
 {
 ToLuaExport.Clear();
 ToLuaExport.className = list[i].name;
 ToLuaExport.type = list[i].type;
 ToLuaExport.isStaticClass = list[i].IsStatic;
 ToLuaExport.baseClassName = list[i].baseName;
 ToLuaExport.wrapClassName = list[i].wrapName;
 ToLuaExport.libClassName = list[i].libName;
 ToLuaExport.Generate(null);
 }
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < list.Length; i++)
 {
 sb.AppendFormat("\t\t{0}Wrap.Register();\r\n", list[i].wrapName);
 }
 EditorApplication.isPlaying = false;
 GenLuaBinder();
 GenLuaDelegates();
 Debug.Log("Generate lua binding files over");
 AssetDatabase.Refresh();
 }
 static void GenLuaBinder()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("using System;");
 sb.AppendLine("using System.Collections.Generic;");
 sb.AppendLine();
 sb.AppendLine("public static class LuaBinder");
 sb.AppendLine("{");
 sb.AppendLine("\tpublic static List<string> wrapList = new List<string>();");
 sb.AppendLine("\tpublic static void Bind(IntPtr L, string type = null)");
 sb.AppendLine("\t{");
 sb.AppendLine("\t\tif (type == null || wrapList.Contains(type)) return;");
 sb.AppendLine("\t\twrapList.Add(type); type += \"Wrap\";");
 sb.AppendLine("\t\tswitch (type) {");
 string[] files = Directory.GetFiles("Assets/uLua/Source/LuaWrap/", "*.cs", Searc
hOption.TopDirectoryOnly);
 List<string> wrapfiles = new List<string>();
 for (int i = 0; i < files.Length; i++)
 {
 string wrapName = Path.GetFileName(files[i]);
 int pos = wrapName.LastIndexOf(".");
 wrapName = wrapName.Substring(0, pos);
 sb.AppendFormat("\t\t\tcase \"{0}\": {0}.Register(L); break;\r\n", wrapName);
 string wrapfile = wrapName.Substring(0, wrapName.Length - 4);
 wrapfiles.Add("import '" + wrapfile + "'");
 }
 if (AppConst.AutoWrapMode) {
 string wrapfile = Application.dataPath + "/Lua/System/Wrap.lua";
 File.WriteAllLines(wrapfile, wrapfiles.ToArray());
 }
 sb.AppendLine("\t\t)"};
 sb.AppendLine("\t)"};
 sb.AppendLine(")"};
 string file = AppConst.LuaBasePath + "Base/LuaBinder.cs";
 using (StreamWriter textWriter = new StreamWriter(file, false, Encoding.UTF8))
 {
 textWriter.Write(sb.ToString());
 textWriter.Flush();
 textWriter.Close();
 }
 }
 //清空生成的文件列表包括Lua和wrap cs文件
 [MenuItem("Lua/Clear LuaBinder File + Wrap Files", false, 13)]
 public static void ClearLuaBinder()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendLine("using System;");
 sb.AppendLine("using System.Collections.Generic;");
 sb.AppendLine();
 sb.AppendLine("public static class LuaBinder");
 sb.AppendLine("{");
 sb.AppendLine("\tpublic static List<string> wrapList = new List<string>();");
 sb.AppendLine("\tpublic static void Bind(IntPtr L, string type = null)");
 sb.AppendLine("\t{");
 sb.AppendLine("\t}");
 sb.AppendLine("}");
 string file = AppConst.LuaBasePath + "Base/LuaBinder.cs";
 using (StreamWriter textWriter = new StreamWriter(file, false, Encoding.UTF8))
 {
 textWriter.Write(sb.ToString());
 textWriter.Flush();
 textWriter.Close();
 }
 if (AppConst.AutoWrapMode) {
 string wrapfile = Application.dataPath + "/Lua/System/Wrap.lua";
 File.WriteAllText(wrapfile, string.Empty);
 }
 ClearFiles(AppConst.LuaWrapPath);
 AssetDatabase.Refresh();
 }
 static DelegateType _DT(Type t)
 {
 return new DelegateType(t);
 }
 static HashSet<Type> GetCustomDelegateTypes()
 {
 BindType[] list = WrapFile.binds;
 HashSet<Type> set = new HashSet<Type>();
 BindingFlags binding = BindingFlags.Public | BindingFlags.Static | BindingFlags.IgnoreCase | BindingFlags.Instance;
 for (int i = 0; i < list.Length; i++)
 {
 Type type = list[i].type;
 FieldInfo[] fields = type.GetFields(BindingFlags.GetField | BindingFlags.SetField | binding);
 PropertyInfo[] props = type.GetProperties(BindingFlags.GetProperty | BindingFlags.SetProperty | binding);
 MethodInfo[] methods = null;
 if (type.IsInterface)
 {
 methods = type.GetMethods();
 }
 else
 {
 methods = type.GetMethods(BindingFlags.Instance | binding);
 }
 for (int j = 0; j < fields.Length; j++)
 {
 Type t = fields[j].FieldType;
 if (typeof(System.Delegate).IsAssignableFrom(t))
 {
 set.Add(t);
 }
 }
 for (int j = 0; j < props.Length; j++)
 {
 Type t = props[j].PropertyType;
 if (typeof(System.Delegate).IsAssignableFrom(t))
 {
 set.Add(t);
 }
 }
 for (int j = 0; j < methods.Length; j++)
 {
 MethodInfo m = methods[j];
 if (m.IsGenericMethod)
 {
 continue;
 }
 ParameterInfo[] pifs = m.GetParameters();
 for (int k = 0; k < pifs.Length; k++)
 {
 Type t = pifs[k].ParameterType;
 if (typeof(System.MulticastDelegate).IsAssignableFrom(t))
 {
 set.Add(t);
 }
 }
 }
 }
 return set;
 }
 /// <summary>
 /// 清除缓存文件
 /// </summary>
 /// <param name="path"></param>
 static void ClearFiles(string path) {
 string[] names = Directory.GetFiles(path);
 foreach (var filename in names) {
 File.Delete(filename); //删除缓存
 }
 }
 static void CopyLuaToOut(string dir)
 {
 string[] files = Directory.GetFiles(Application.dataPath + "/Lua/" + dir, "*.lua", SearchOption.TopDirectoryOnly);
 string outDir = Application.dataPath + "/Lua/Out/" + dir + "/";
 if (!File.Exists(outDir))
 {
 Directory.CreateDirectory(outDir);
 }
 for (int i = 0; i < files.Length; i++)
 {
 string fname = Path.GetFileName(files[i]);
 FileUtil.CopyFileOrDirectory(files[i], outDir + fname + ".bytes");
 }
 }
 static string GetOS()
 {
#if UNITY_STANDALONE
 return "Win";
#elif UNITY_ANDROID
 return "Android";
#elif UNITY_IPHONE
 return "IOS";
#endif
 }
 static void CreateDir(string dir)
 {
 if (!Directory.Exists(dir))
 {
 Directory.CreateDirectory(dir);
 }
 }
 static void BuildLuaBundle(string dir)
 {
 BuildAssetBundleOptions options = BuildAssetBundleOptions.CollectDependencies | BuildAssetBundleOptions.CompleteAssets | BuildAssetBundleOptions.DeterministicAssetBundl e;
 string[] files = Directory.GetFiles("Assets/Lua/Out/" + dir, "*.lua.bytes");
 List<Object> list = new List<Object>();
 string bundleName = dir == null ? "Lua.unity 3d" : "Lua_" + dir + ".unity 3d";
 CreateDir(Application.dataPath + "/Bundle/");
 CreateDir(string.Format("{0}/{1}/", Application.persistentDataPath, GetOS()));
 for (int i = 0; i < files.Length; i++)
 {
 Object obj = AssetDatabase.LoadMainAssetAtPath(files[i]);
 list.Add(obj);
 }
 if (files.Length > 0)
 {
 string output = string.Format("{0}/Bundle/" + bundleName, Application.dataPa th);
 BuildPipeline.BuildAssetBundle(null, list.ToArray(), output, options, Editor UserBuildSettings.activeBuildTarget);
 string output1 = string.Format("{0}/{1}/" + bundleName, Application.persiste ntDataPath, GetOS());
 File.Delete(output1);
 File.Copy(output, output1);
 AssetDatabase.Refresh();
 }
 }
 /// <summary>
 /// 编码Lua文件用UTF-8
 /// </summary>
 [MenuItem("Lua/Encode LuaFile with UTF-8", false, 50)]
 public static void EncodeLuaFile() {
 string path = Application.dataPath + "/Lua";
 string[] files = Directory.GetFiles(path, "*.lua", SearchOption.AllDirectories);
 foreach (string f in files) {
 string file = f.Replace('\\', '/');
 string content = File.ReadAllText(file);
 using (var sw = new StreamWriter(file, false, new UTF8Encoding(false))) {
 sw.Write(content);
 }
 Debug.Log("Encode file::>>" + file + " OK!");
 }
 }
 [MenuItem("Lua/Build Lua without jit", false, 4)]
 public static void BuildLuaNoJit()
 {
 string dir = Application.dataPath + "/Lua/Out/";
 if (!Directory.Exists(dir))
 {
 Directory.CreateDirectory(dir);
 }
 string[] files = Directory.GetFiles(dir, "*.lua.bytes", SearchOption.AllDirector ies);
 for (int i = 0; i < files.Length; i++)
 {
 FileUtil.DeleteFileOrDirectory(files[i]);
 }
 CopyLuaToOut(null);
 AssetDatabase.Refresh();
 BuildLuaBundle(null);
 UnityEngine.Debug.Log("编译lua without jit结束");
 }
 List<BindType> list = new List<BindType>();
 Assembly assembly = Assembly.Load("UnityEngine");
 Type[] types = assembly.GetExportedTypes();
 for (int i = 0; i < types.Length; i++)
 {
 //不导出：模版类、event委托、C#协同相关、obsolete类
 if (!types[i].IsGenericType ＆＆ types[i].BaseType != typeof(System.MulticastDelegate) ＆＆
 !typeof(YieldInstruction).IsAssignableFrom(types[i]) ＆＆ !ToLuaExport.IsObsolete(types[i]))
 {
 list.Add(WrapFile._GT(types[i]));
 }
 else
 {
 Debug.Log("drop generic type " + types[i].ToString());
 }
 }
 for (int i = 0; i < dropList.Count; i++)
 {
 list.RemoveAll((p) => { return p.type.ToString().Contains(dropList[i]); });
 }
 for (int i = 0; i < list.Count; i++)
 {
 try
 {
 ToLuaExport.Clear();
 ToLuaExport.className = list[i].name;
 ToLuaExport.type = list[i].type;
 ToLuaExport.isStaticClass = list[i].IsStatic;
 ToLuaExport.baseClassName = list[i].baseName;
 ToLuaExport.wrapClassName = list[i].wrapName;
 ToLuaExport.libClassName = list[i].libName;
 ToLuaExport.Generate(null);
 }
 catch (Exception e)
 {
 Debug.LogWarning("Generate wrap file error: " + e.ToString());
 }
 }
 GenLuaBinder();
 Debug.Log("Generate lua binding files over， Generate " + list.Count + " files");
 AssetDatabase.Refresh();
 }
}

 工具文件代码比较长，在这里把开发中经常使用的函数着重介绍一下，然后把上述两个脚本加到Assets->Editor下面，如图12-6所示。

 [image:]
 图12-6　工具脚本在Unity中显示

 对应在Unity的工具栏中的效果如图12-7所示。

 [image:]
 图12-7　在Unity的工具栏中的效果

 包含Gen Lua Wrap Files菜单和Clear LuaBinder File + Wrap Files菜单，单击前者会在目录下生成Warp的扩展名为cs的文件，后者是清空。

 [MenuItem("Lua/Clear LuaBinder File + Wrap Files", false, 13)]

 该函数的作用是清空以前生成的cs文件，已打包的文件assetbundle、Lua脚本文件和配置文件，避免在修改文件时由于覆盖出现问题。这个操作可以保证你打包的资源万无一失。

 然后编译供Lua调用的C#脚本文件，执行菜单项如下。

 [MenuItem("Lua/Gen Lua Wrap Files", false, 11)]

 首先是生成供Lua调用的wrap的cs文件，它是通过函数public static void Binding()生成的，同时它还会生成wrap.lua文件，详细内容见函数实现，warp.lua 脚本内容如图12-8所示。

 [image:]
 图12-8　生成的wrap.lua脚本内容

 该脚本是把需要Lua调用的C#接口类在这里统一引用。生成文件LuaBind.cs，该文件的作用是把注册的C#文件函数加载到Table表中，部分代码如图12-9所示。

 [image:]
 图12-9　生成的bindlua.cs脚本内容

 图12-9中有一个Register(L)的函数调用，它的功能就是将类注册到Table表中。一般在生成wrap的cs文件时先清空，生成的wrap文件如图12-10所示。

 [image:]
 图12-10　生成的wrap文件

 在生成的wrap文件中，有Unity自带的文件和用户自定义的文件两种。以文件BIEFramework_Manager_PanelManagerWrap为例，其中BIEFramework表示的是namespace命名空间的名字，Manager是所在的文件夹名字，PanelManager是文件名字，文件的最后加了“Wrap”。

using System;
using UnityEngine;
using LuaInterface;
using Object = UnityEngine.Object;
public class BIEFramework_Manager_PanelManagerWrap
{
 public static void Register(IntPtr L)
 {
 LuaMethod[] regs = new LuaMethod[]
 {
 new LuaMethod("CreatePanel", CreatePanel),
 new LuaMethod("New", _CreateBIEFramework_Manager_PanelManager),
 new LuaMethod("GetClassType", GetClassType),
 new LuaMethod("__eq", Lua_Eq),
 };
 LuaField[] fields = new LuaField[]
 {
 };
 LuaScriptMgr.RegisterLib(L, "BIEFramework.Manager.PanelManager", typeof(BIEFramework.Manager.PanelManager), regs, fields, typeof(MonoBehaviour));
 }
 [MonoPInvokeCallbackAttribute(typeof(LuaCSFunction))]
 static int _CreateBIEFramework_Manager_PanelManager(IntPtr L)
 {
 LuaDLL.luaL_error(L, "BIEFramework.Manager.PanelManager class does not have a co nstructor function");
 return 0;
 }
 static Type classType = typeof(BIEFramework.Manager.PanelManager);
 [MonoPInvokeCallbackAttribute(typeof(LuaCSFunction))]
 static int GetClassType(IntPtr L)
 {
 LuaScriptMgr.Push(L, classType);
 return 1;
 }
 [MonoPInvokeCallbackAttribute(typeof(LuaCSFunction))]
 static int CreatePanel(IntPtr L)
 {
 LuaScriptMgr.CheckArgsCount(L, 3);
 BIEFramework.Manager.PanelManager obj = (BIEFramework.Manager.PanelManager)LuaSc riptMgr.GetUnityObjectSelf(L, 1, "BIEFramework.Manager.PanelManager");
 string arg0 = LuaScriptMgr.GetLuaString(L, 2);
 LuaFunction arg1 = LuaScriptMgr.GetLuaFunction(L, 3);
 obj.CreatePanel(arg0,arg1);
 return 0;
 }
 [MonoPInvokeCallbackAttribute(typeof(LuaCSFunction))]
 static int Lua_Eq(IntPtr L)
 {
 LuaScriptMgr.CheckArgsCount(L, 2);
 Object arg0 = LuaScriptMgr.GetLuaObject(L, 1) as Object;
 Object arg1 = LuaScriptMgr.GetLuaObject(L, 2) as Object;
 bool o = arg0 == arg1;
 LuaScriptMgr.Push(L, o);
 return 1;
 }
}

 在函数public static void Register(IntPtr L)中注册了供Lua调用的函数属性和方法，在该函数的最后有一条语句如下。

LuaScriptMgr.RegisterLib(L, "BIEFramework.Manager.PanelManager", typeof(BIEFramework.Man ager.PanelManager), regs, fields, typeof(MonoBehaviour));

 这条语句表示的是将PanelManager类中的方法和属性在Lua中注册，使程序运行时可以在脚本Lua中调用，这样就完成了Lua调用C#接口的操作，用Lua写逻辑就非常方便了。UI的逻辑都是用Lua脚本写的，这样就需要大量的C#接口，接下来开始讲解模块化接口的实现。

 12.4　模块化接口实现

 由于游戏UI开发的逻辑都在Lua中编写，所以需要提供C＃的接口封装，以方便Lua写逻辑时调用，在此根据功能划分设计了一些模块，这些模块有对象管理模块、文件加载模块、面板管理模块、3D物体管理模块、音乐管理模块，等等，模块架构设计如图12-11所示。

 [image:]
 图12-11　模块架构设计

 所有的模块接口如果需要被Lua逻辑调用，那么它们需要在Lua中注册。下面通过几个模块案例给大家介绍一下，如何去构建自己的模块。对象管理模块ObjManager主要是负责3D物体的创建以及销毁操作，实现的完整代码如下所示。

using UnityEngine;
using System.Collections;
using BIEFramework;
using System.Collections.Generic;
using UnityEngine.UI;
using LuaInterface;
// 用于对象的创建
// Author: Jxw
// 2015-12-28
namespace BIEFramework.Manager
{
 public class ObjManager : MonoBehaviour
 {
 Dictionary<string, AssetBundle> abDic = new Dictionary<string, AssetBundle>();
 Dictionary<string ,Object> objDic = new Dictionary<string, Object>();
 GameObject parentObj ;
 GameObject uiRoot;
 void Awake()
 {
 parentObj = new GameObject ("parentObj");
 uiRoot = GameObject.Find ("Canvas");
 }
 /// <summary>
 /// 加载对象接口方便Lua调用
 /// </summary>
 /// <param name="bundleName"></param>
 /// <param name="objName"></param>
 /// <returns></returns>
 public GameObject CreateAndLoadObj(string bundleName, string objName = null)
 {
 bundleName = bundleName.ToLower ();
// Debug.Log("load asset name: " + bundleName);
 if (ObjectCacheDic.ContainsKey (bundleName)) {
 GameObject cacheObj = ObjectCacheDic [bundleName] as GameObject;
 if(cacheObj.transform.parent == parentObj.transform ||bundleName.Contains("car-")||cacheObj.transform.parent == uiRoot.transform)
 {
 cacheObj.SetActive(true);
 return cacheObj;
 }
 else
 {
 GameObject g = Instantiate(ObjectCacheDic [bundleName]) as GameObject;
 g.SetActive(true);
 return g;
 }
 }
 ResourceManager resMgr = Facade.Instance.GetManager<ResourceManager>(ManagerName.Resource);
 AssetBundle bundle = resMgr.LoadBundle(bundleName);
 GameObject prefab = null;
 if (bundle == null)
 return null;
 if (objName != null)
 {
 prefab = bundle.LoadAsset(objName, typeof(GameObject)) as GameObject;
 }
 else
 {
 prefab = bundle.mainAsset as GameObject;
 }
 GameObject go = Instantiate(prefab) as GameObject;
 if (!abDic.ContainsKey(bundleName)) abDic.Add(bundleName, bundle);
 return go;
 }
 public void UnLoadAllAB()
 {
 foreach (AssetBundle ab in abDic.Values) {
 if(ab)
 ab.Unload(false);
 }
 }
 public Material CreateAndLoadMat(string bundleName, string objName = null)
 {
 ResourceManager resMgr = Facade.Instance.GetManager<ResourceManager>(Manager Name.Resource);
 AssetBundle bundle = resMgr.LoadBundle(bundleName);
 Material prefab = null;
 if (objName != null)
 {
 prefab = bundle.LoadAsset(objName, typeof(Material)) as Material; }
 else
 {
 prefab = bundle.mainAsset as Material;
 }
 Material go = Instantiate(prefab) as Material;
 if (!abDic.ContainsKey(bundleName)) abDic.Add(bundleName, bundle);
 return go;
 }
 public Sprite CreateAndLoadSprite(string bundleName, string objName = null)
 {
 ResourceManager resMgr = Facade.Instance.GetManager<ResourceManager>(Manager Name.Resource);
 AssetBundle bundle = resMgr.LoadBundle(bundleName);
 Sprite prefab = null;
 if (objName != null)
 {
 prefab = bundle.LoadAsset(objName, typeof(Sprite)) as Sprite;
 }
 else
 {
 prefab = bundle.mainAsset as Sprite;
 }
 Sprite go = Instantiate(prefab) as Sprite;
 if (!abDic.ContainsKey(bundleName)) abDic.Add(bundleName, bundle);
 return go;
 }
 public void AddSpriteTexture(GameObject obj, string bundleName, string objName = null)
 {
 Sprite sprite = CreateAndLoadSprite(bundleName, objName);
 obj.GetComponent<Image>().sprite = sprite;
 }
 public Material ResourcesLoadMat(string path)
 {
 Material mat = Object.Instantiate(Resources.Load(path)) as Material;
 return mat;
 }
 public Dictionary<string,Object> ObjectCacheDic = new Dictionary<string, Object>();
 int index;
 DownLoadUI ui ;
 LuaFunction LuaCall ;
 GameManager gm;
 List<string> allResours = new List<string>();
 public void LoadPanelObjectToDic(string panelStrs,LuaFunction func)
 {
 if(parentObj == null)
 parentObj = new GameObject ("parentObj");
 if(uiRoot == null)
 uiRoot = GameObject.Find ("Canvas");
 LuaCall = func;
 char[] splitChar = new char[]{','};
 string[] allPanelNames = panelStrs.Split (splitChar);
 foreach (string s in allPanelNames) {
 allResours.Add(s.ToLower()+"panel");
 }
 for (int i = 0; i < FileManager.FindCarInfoList().Count; i ++) {
 allResours.Add(FileManager.FindCarInfoList()[i].Resources.ToLower());
 }
 index = 0;
 gm = Facade.Instance.GetManager<GameManager> (ManagerName.Game);
 gm.curNum = 1;
 gm.totalNum = allResours.Count;
 gm.status = DownLoadUI.Status.LoadSceneResource;
 ui= GameObject.Find ("Canvas").transform.FindChild("DownLoadPanel").GetCompo nent<DownLoadUI>();
 ui.Show (gm, true);
 ui.GetComponent<RectTransform> ().localScale = Vector3.one;
 StartCoroutine (LoadPanelAsset (index));
 }
 IEnumerator LoadPanelAsset(int index)
 {
 string abName = allResours [index];
 yield return StartCoroutine(Initialize());
 ResourceManager resMgr = Facade.Instance.GetManager<ResourceManager>(Manager Name.Resource);
 AssetBundle ab = resMgr.LoadBundle(abName);
 GameObject prefab = ab.LoadAsset<GameObject>(abName);
 ab.Unload (false);
 GameObject go = Instantiate(prefab) as GameObject;
 go.name = abName;
 if (!go.name.Contains ("car-")) {
 if(go.name.Contains("panel"))
 {
 go.transform.SetParent(uiRoot.transform);
 go.GetComponent<RectTransform>().SetSiblingIndex(0);
 }
 else
 go.transform.SetParent(parentObj.transform);
 }
 //go.SetActive (false);
 if(abName.Contains("panel"))
 StartCoroutine (SetDisable (go));
 else
 go.SetActive (false);
 if (!ObjectCacheDic.ContainsKey (abName))
 ObjectCacheDic.Add (abName, go);
 else
 ObjectCacheDic [abName] = go;
 index ++;
 if (index < allResours.Count) {
 ui.GetComponent<RectTransform> ().SetSiblingIndex (10);
 gm.curNum = index +1;
 gm.curProcess =(float)index / allResours.Count;
 StartCoroutine (LoadPanelAsset (index));
 } else {
 ui.Show(gm,false);
 LuaCall.Call();
 GameObject mask = GameObject.Find("Canvas/Mask");
 mask.transform.localScale = Vector3.one;
 mask.GetComponent<RectTransform>().SetSiblingIndex (100);
 UTween.UTweenAlpha(mask,1,0,1.5f,true);
 StopAllCoroutines();
 }
 }
 IEnumerator SetDisable(GameObject go)
 {
 yield return new WaitForSeconds (1f);
 go.SetActive (false);
 }
 IEnumerator Initialize()
 {
 ResourceManager.BaseDownloadingURL = Util.GetRelativePath();
 var request = ResourceManager.Initialize(AppConst.AssetDirname);
 if (request != null)
 {
 yield return StartCoroutine(request);
 }
 }
 public void OnDestroy()
 {
 UnLoadAllAB ();
 abDic.Clear ();
 objDic.Clear ();
 ObjectCacheDic.Clear ();
 allResours.Clear ();
 }
 }
}

 该模块主要实现了对象的加载函数public GameObject CreateAndLoadObj(string bundle Name, string objName = null)，材质的加载函数public Material CreateAndLoadMat(string bundle Name, string objName = null) ，图片精灵加载函数 public void AddSpriteTexture(GameObject obj, string bundleName, string objName = null)，把需要加载的面板存放到字典Dictionary的函数public void LoadPanelObjectToDic(string panelStrs,LuaFunction func)中。在该函数的参数中有LuaFunction，它可以在Lua中作为Lua的函数去执行回调，这些功能在Lua中都可以调用。在该模块中还定义了一个将所有面板加载到Dictionary的功能实现，为预加载使用的，函数如下。

public void LoadPanelObjectToDic(string panelStrs,LuaFunction func)

 再给读者介绍一下面板管理模块，面板管理的主要功能是创建面板、销毁面板等，实现的代码如下所示。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using UnityEngine.UI;
using LuaInterface;
//用于面板的创建
// Author:Jxw
// 2015-10-16
namespace BIEFramework.Manager
{
 public class PanelManager : MonoBehaviour
 {
 private Transform parent;
 Transform Parent
 {
 get
 {
 if (null == parent)
 {
 GameObject go = GameObject.Find("Canvas");
 if (go != null)
 {
 parent = go.transform;
 CreateObj("botoom", parent);
 CreateObj("middle", parent);
 CreateObj("top", parent);
 }
 }
 return parent;
 }
 }
 private Transform layerTop;
 public Transform LayerTop
 {
 get
 {
 if (Parent != null ＆＆ layerTop == null)
 layerTop = Parent.FindChild("top");
 return layerTop;
 }
 }
 private Transform layerMiddle;
 public Transform LayerMiddle
 {
 get
 {
 if (Parent != null ＆＆ layerMiddle == null)
 layerMiddle = Parent.FindChild("middle"); ;
 return layerMiddle;
 }
 }
 private Transform layerBottom;
 public Transform LayerBottom
 {
 get
 {
 if (Parent != null ＆＆ layerBottom == null)
 layerBottom = Parent.FindChild("botoom");
 return layerBottom;
 }
 }
 private void CreateObj(string name, Transform par)
 {
 GameObject middle = new GameObject(name);
 RectTransform rect = middle.AddComponent<RectTransform>();
 rect.parent = par;
 rect.localScale = Vector3.one;
 rect.localPosition = Vector3.one;
 rect.anchorMax = Vector2.one;
 rect.anchorMin = Vector2.zero;
 rect.sizeDelta = Vector2.zero;
 }
 /// <summary>
 ///创建面板
 /// </summary>
 /// <param name="type"></param>
 public void CreatePanel(string name, LuaFunction func = null)
 {
 OnCreatePanel(name, func);
 }
 public void CreatePanelAtTop(string name, LuaFunction func = null)
 {
 OnCreatePanel(name, func, 1);
 }
 public void CreatePanelAtBotoom(string name, LuaFunction func = null)
 {
 OnCreatePanel(name, func, -1);
 }
 /// <summary>
 /// 用协程创建面板
 /// </summary>
 /// <param name="type"></param>
 void OnCreatePanel(string name, LuaFunction func, int layer = 0)
 {
 string key = name;
 if (!name.Equals ("Prompt")＆＆!name.Equals ("Note"))
 key = name.ToLower ()+"panel";
 if (Facade.Instance.ObjManager.ObjectCacheDic.ContainsKey (key)) {
 //yield return new WaitForSeconds(0.1f);
 GameObject go = Facade.Instance.ObjManager.ObjectCacheDic[key] as GameObject;
 go.SetActive(true);
 go.name = name +"Panel" ;
 go.layer = LayerMask.NameToLayer("Default");
 if (layer == 0)
 {
 go.transform.SetParent(LayerMiddle);
 }
 else if (layer < 0)
 {
 go.transform.SetParent(LayerBottom);
 }
 else if (layer > 0)
 {
 go.transform.SetParent(LayerTop);
 }
 go.transform.localScale = Vector3.one;
 go.transform.localPosition = Vector3.zero;
 go.AddComponent<LuaBehaviour>();
 if (func != null)
 {
 func.Call(go);
 }
 } else {
 StartCoroutine(loadPanelSync(name,func,layer));
 }
 }
 IEnumerator loadPanelSync(string name, LuaFunction func, int layer = 0)
 {
 yield return StartCoroutine(Initialize());
 string assetName = name + "Panel";
 string abName = assetName.ToLower() ;
 ResourceManager resMgr = Facade.Instance.GetManager<ResourceManager>(ManagerName.Resource);
 AssetBundle ab = resMgr.LoadBundle(abName);
 GameObject prefab = ab.LoadAsset<GameObject>(assetName);
 if (Parent.FindChild(name) != null || prefab == null)
 {
 yield break;
 }
 GameObject go = Instantiate(prefab) as GameObject;
 go.name = assetName;
 go.layer = LayerMask.NameToLayer("Default");
 if (layer == 0)
 {
 go.transform.SetParent(LayerMiddle);
 }
 else if (layer < 0)
 {
 go.transform.SetParent(LayerBottom);
 }
 else if (layer > 0)
 {
 go.transform.SetParent(LayerTop);
 }
 go.transform.localScale = Vector3.one;
 go.transform.localPosition = Vector3.zero;
 go.AddComponent<LuaBehaviour>();
 if (func != null)
 {
 func.Call(go);
 }
 Debug.LogWarning("CreatePanel::>> " + name + " " + prefab);
 }
 IEnumerator Initialize()
 {
 ResourceManager.BaseDownloadingURL = Util.GetRelativePath();
 var request = ResourceManager.Initialize(AppConst.AssetDirname);
 if (request != null)
 {
 yield return StartCoroutine(request);
 }
 }
 }
}

 在Lua中经常使用的函数是创建面板函数public void CreatePanel(string name, LuaFunction func = null)，以及创建顶部面板的函数 public void CreatePanelAtTop(string name, LuaFunction func = null)。在后面会结合Lua逻辑的调用告诉大家如何使用我们自己定义的模块接口。

 12.5　Lua脚本逻辑编写

 模块封装完成后，开始Lua逻辑代码的编写。MVC这种常用的设计模式，主要是应用在UI的架构设计上，Lua脚本设计也采用了MVC设计模式。在Lua中主要是针对面板的初始化操作，把面板的各个控件定义好，便于在C#中也就是Controller控制逻辑中调用，Controller负责UI的整个逻辑编写。在编写Lua脚本之前，先运行前面几章封装好的工具，执行顺序是首先运行Game-＞BulidWindow，因为我是在Windows平台上，这样生成的是Windows的包，接着执行Lua-＞Gen Lua Wrap files生成给Lua调用的C#接口，在Lua中注册。再介绍Lua脚本的编写，对于一些常用的函数封装，这些函数我们可以直接用Lua封装，方便在Lua中执行调用，比如Vector2.lua、Vector3.lua、Vector4.lua、Global.lua等脚本。还有对于第三方库的脚本，比如protobuf、pbc、json等。这些在框架中都有现成的，可以直接拿来使用。接下来介绍一下Lua使用的MVC设计模式，以PromptPanel面板为例，首先用UGUI制作一个面板并且将其做成Prefab，效果如图12-12所示。

 [image:]
 图12-12　用UGUI制作一个面板

 在PromptPanel面板里面，有几个注意事项：一是命名采用的是：Prompt +“Panel”，在我们设计的方案里，必须要按照这种方式命名，当然也可以自定义一种方式，但是一定要统一；二是对于一些用户可以单击操作的命名也要规范，比如Open是Button的名字，这样在写脚本逻辑时，可以直接在脚本里面定义。完整的Lua脚本代码如下所示。

local transform;
local gameObject;
PromptPanel = {};
local this = PromptPanel;
--启动事件--
function PromptPanel.Awake(obj)
 gameObject = obj;
 transform = obj.transform;
 this.InitPanel();
 warn("Awake lua--->>"..gameObject.name);
end
--初始化面板--
function PromptPanel.InitPanel()
 this.btnOpen = transform:FindChild("Open").gameObject;
 this.gridParent = transform:FindChild('ScrollView/Grid');
end
--单击事件--
function PromptPanel.OnDestroy()
 --warn("OnDestroy---->>>");
end

 以上是脚本文件PromptPanel.lua，函数function PromptPanel.Awake(obj)用于面板的初始化，在这个函数里又调用了函数function PromptPanel.InitPanel()，函数的作用是初始化面板中的控件按钮，这样可以直接在PromptCtrl中获取到。下面写单击Button的逻辑脚本PromptCtrl.lua，也就是我们说的Controller控制模块，完整的控制类PromptCtrl.lua代码如下所示。

require "Common/define"
PromptCtrl = {};
local this = PromptCtrl;
local panel;
local prompt;
local transform;
local gameObject;
--构建函数--
function PromptCtrl.New()
 warn("PromptCtrl.New--->>");
 return this;
end
function PromptCtrl.Awake()
 warn("PromptCtrl.Awake--->>");
 PanelManager:CreatePanel('Prompt', this.OnCreate);
end
--启动事件--
function PromptCtrl.OnCreate(obj)
 gameObject = obj;
 transform = obj.transform;
 --panel = transform:GetComponent('UIPanel');
 prompt = transform:GetComponent('LuaBehaviour');
 warn("Start lua--->>"..gameObject.name);
 prompt:AddClick(PromptPanel.btnOpen, this.OnClick);
 ResManager:LoadAsset('prompt', 'PromptItem', this.InitPanel);
end
--滚动项单击--
function PromptCtrl.OnItemClick(go)
 log(go.name);
end
--单击事件--
function PromptCtrl.OnClick(go)
 local ctrl = CtrlManager.GetCtrl(CtrlName.Message);
 if ctrl ~= nil then
 ctrl:Awake();
 --destroy(gameObject);
 end
 warn("OnClick---->>>"..go.name);
end
--关闭事件--
function PromptCtrl.Close()
 PanelManager:ClosePanel(CtrlName.Prompt);
end

 该脚本第一行使用了require "Common/define"，其中require相当于C#中的using，意思就是告诉脚本要引用Common/Define中的内容。Define就是Define.lua。函数function PromptCtrl.New()，就是new一个自身的对象，相当于C++或者C#中的构造函数。函数Awake用于面板的创建，代码如下所示。

function PromptCtrl.Awake()
 warn("PromptCtrl.Awake--->>");
 PanelManager:CreatePanel('Prompt', this.OnCreate);
end

 函数Awake调用C#模块PanelManager中的函数CreatePanel用于面板的创建。它的函数参数this.OnCreate就是Lua的回调函数，OnCreate函数实现的内容是prompt = transform:GetComponent('LuaBehaviour');，它是获取对象上的脚本组件'LuaBehaviour'，然后通过prompt：AddClick函数调用C#脚本的内容。语句ResManager:LoadAsset('prompt', 'PromptItem', this.InitPanel);与PanelManager:CreatePanel的原理是一样的，也是调用C#的函数接口。函数function PromptCtrl.OnClick(go)就是单击的逻辑处理，它里面的内容是通过CtrlManager脚本获取到MessageCtrl这个对象，然后调用它的Awake函数创建出MessagePanel面板。下面给大家逐一介绍上述已定义的Lua脚本，先介绍require"Common/Define"，它表示的是在文件Common文件夹下的Define.lua脚本，Define.lua脚本的内容如下。

CtrlName = {
 Prompt = "PromptCtrl",
 Message = "MessageCtrl",
}
--协议类型--
ProtocalType = {
 BINARY = 0,
 PB_LUA = 1,
 PBC = 2,
 SPROTO = 3,
}
--当前使用协议类型--
TestProtoType = ProtocalType.PB_LUA;
Util = BIEFramework.Util;
AppConst = BIEFramework.AppConst;
LuaHelper = BIEFramework.LuaHelper;
ByteBuffer = BIEFramework.ByteBuffer;
ResManager = LuaHelper.GetResManager();
PanelManager = LuaHelper.GetPanelManager();
MusicManager = LuaHelper.GetMusicManager();

 在这个脚本中使用了 CtrlName.Message 结构中的变量，还有函数 ResManager = LuaHelper.GetResManager();和PanelManager = LuaHelper.GetPanelManager();这两个语句，在define.lua中这样定义的目的就是用ResManager代替LuaHelper.GetResManager();，PanelManager的原理也是一样的。再打开CtrlManager.lua看一下脚本内容，CtrlManager.lua主要是对脚本中的Ctrl进行统一管理。

require "Common/define"
require "Controller/PromptCtrl"
require "Controller/MessageCtrl"
CtrlManager = {};
local this = CtrlManager;
local ctrlList = {}; --控制器列表--
function CtrlManager.Init()
 warn("CtrlManager.Init----->>>");
 ctrlList[CtrlName.Prompt] = PromptCtrl.New();
 ctrlList[CtrlName.Message] = MessageCtrl.New();
 return this;
end
--添加控制器--
function CtrlManager.AddCtrl(ctrlName, ctrlObj)
 ctrlList[ctrlName] = ctrlObj;
end
--获取控制器--
function CtrlManager.GetCtrl(ctrlName)
 return ctrlList[ctrlName];
end
--移除控制器--
function CtrlManager.RemoveCtrl(ctrlName)
 ctrlList[ctrlName] = nil;
end
--关闭控制器--
function CtrlManager.Close()
 warn('CtrlManager.Close---->>>');
end

 该脚本主要实现了面板Ctrl控制器的注册，函数实现如下。

 function CtrlManager.Init()
 warn("CtrlManager.Init----->>>");
 ctrlList[CtrlName.Prompt] = PromptCtrl.New();
 ctrlList[CtrlName.Message] = MessageCtrl.New();
 return this;
 end

 该Lua脚本的主要功能是增加、获取、移除、关闭Ctrl控制器。接下来通过一个案例介绍一下如何在该框架的基础上开发游戏。

 12.6　案例实现

 游戏开始运行时，首先需要做的是把脚本加载到内存里面，所以需要一个专门的C#脚本处理这个事情。这个脚本不仅负责预先加载Lua脚本，而且负责资源的更新、加载等功能。我们将这个脚本定义为GameManager .cs。

using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;
using LuaInterface;
using System.Reflection;
using System.IO;
using Junfine.Debuger;
using System.Linq;
using System.Net;
using System.Threading;
#if UNITY_EDITOR
using UnityEditor;
#endif
// 主要是用于管理所有Manager以及加载Lua脚本资源，初始化网络脚本
// Author:Jxw
// 2015-10-16
#if UNITY_EDITOR
#pragma warning disable 0162 // 检测到无法访问的代码
#endif
namespace BIEFramework.Manager {
 public class GameManager : LuaBehaviour {
 public LuaScriptMgr uluaMgr;
 //脚本管理类用于反射
 private List<string> downloadFiles = new List<string>();
 /// <summary>
 /// 初始化游戏管理器
 /// </summary>
 void Awake() {
 Init();
 }
 /// <summary>
 /// 初始化
 /// </summary>
 void Init() {
 //防止销毁自己
 DontDestroyOnLoad(gameObject);
 Facade.Instance.AddManager(ManagerName.Lua, new LuaScriptMgr());
 Facade.Instance.AddManager<PanelManager>(ManagerName.Panel);
 Facade.Instance.AddManager<MusicManager>(ManagerName.Music);
 Facade.Instance.AddManager<TimerManager>(ManagerName.Timer);
 // AppFacade.Instance.AddManager<NetworkManager>(ManagerName.Network);
 Facade.Instance.AddManager<ResourceManager>(ManagerName.Resource);
 Facade.Instance.AddManager<ThreadManager>(ManagerName.Thread);
 Facade.Instance.AddManager<ObjManager>(ManagerName.Obj);
 //释放资源
 CheckExtractResource();
 Screen.sleepTimeout = SleepTimeout.NeverSleep;
 Application.targetFrameRate = AppConst.GameFrameRate;
 }
 /// <summary>
 /// 释放资源
 /// </summary>
 public void CheckExtractResource() {
 if (Application.isEditor) {
 string[] abpaths = Directory.GetFiles(Util.DataPath, "*.zip");
 float num = 0f;
 foreach (string abpath in abpaths) {
 string Extension = Path.GetFileNameWithoutExtension(abpath).StartsWith("guanka") ? "" : AppConst.ExtName;
 CompressUtil.DeCompress(abpath, Path.GetDirectoryName(abpath) + "/" + Path.GetFileNameWithoutExtension(abpath) + Extension, null); #if UNITY_EDITOR
 EditorUtility.DisplayCancelableProgressBar("Hold On", string.Format("解压资源{0}", Path.GetFileName(abpath)), num / abpaths.Length); #endif
 File.Delete(abpath);
 num++;
 }
 #if UNITY_EDITOR
 EditorUtility.ClearProgressBar();
 #endif
 OnResourceInited();
 } else {
 //启动释放协程
 StartCoroutine(OnExtractResource());
 }
 }
 Thread downloadThread;
 List<ResourceFileInfo> serverList = new List<ResourceFileInfo>();
 List<ResourceFileInfo> localList = new List<ResourceFileInfo>();
 List<ResourceFileInfo> needDownload = new List<ResourceFileInfo>();
 [HideInInspector]
 public int curNum,totalNum;
 [HideInInspector]
 public float curProcess;
 string dataPath, resPath;
 [HideInInspector]
 public DownLoadUI.Status status = DownLoadUI.Status.DownLoad;
 IEnumerator OnExtractResource() {
 //数据目录
 dataPath = Util.DataPath;
 //游戏包资源目录
 //string resPath = Util.AppContentPath();
#if UNITY_ANDROID
 resPath = "http://127.0.0.1/StreamingAssets-Temp/";
#elif UNITY_IPHONE
 SERVER_RES_URL="http://127.0.0.1/StreamingAssets-Temp/";
#elif UNITY_EDITOR || UNITY_STANDALONE_WIN
 string SERVER_RES_URL="http://127.0.0.1/StreamingAssets-Temp/";
#endif
 if (!Directory.Exists(dataPath)) {
 Directory.CreateDirectory(dataPath);
 }
 string serverPath = resPath + "files.txt";
 string localPath = dataPath + "files.txt";
 if (!File.Exists(localPath)) {
 FileStream fstemp = File.Create(localPath);
 fstemp.Close();
 }
 CompareServerVersion(serverPath, localPath, needDownload);
 curNum = 0;
 totalNum = needDownload.Count;
 if (totalNum <= 0) {
 OnResourceInited();
 } else {
 status = DownLoadUI.Status.DownLoad;
 DownLoadUI.Instance.Show(this, true);
 downloadThread = new Thread(new ThreadStart(DownLoadFile));
 downloadThread.Start();
 yield return null;
 CoroutineManager.DoCoroutine(CheckDownLoad());
 }
 }
 IEnumerator CheckDownLoad() {
 while (true) {
 if (curNum >= totalNum) {
 DownLoadUI.Instance.Show(this, false);
 OnResourceInited();
 break;
 }
 yield return null;
 }
 }
 void DownLoadFile() {
 string serverPath, localPath;
 //释放所有文件到数据目录
 foreach (ResourceFileInfo rfi in needDownload) {
 serverPath = resPath + rfi.file; //
 localPath = dataPath + rfi.file;
 //message = "正在解包文件:>" + fs[0];
 Debug.Log("正在解包文件:>" + serverPath);
 // facade.SendMessageCommand(NotiConst.UPDATE_MESSAGE, message);
 string dir = Path.GetDirectoryName(localPath);
 if (!Directory.Exists(dir)) {
 Directory.CreateDirectory(dir);
 }
 HttpWebRequest request = null;
 HttpWebResponse response = null;
 Stream ns = null;
 FileStream fs = null;
 if (File.Exists(localPath)) {
 File.Delete(localPath);
 //打开流
 }
 fs = new FileStream(localPath, FileMode.CreateNew);
 try {
 request = (HttpWebRequest)HttpWebRequest.Create(serverPath);
 response = (HttpWebResponse)request.GetResponse();
 //向服务器请求，获得服务器回应数据流
 ns = response.GetResponseStream();
 byte[] nbytes = new byte[1024];
 int nReadSize = 0;
 long curLength = 0;
 long totalLength = response.ContentLength;
 nReadSize = ns.Read(nbytes, 0, 1024);
 curLength += nReadSize;
 curProcess = curLength / (float)totalLength;
 while (nReadSize > 0) {
 fs.Write(nbytes, 0, nReadSize);
 nReadSize = ns.Read(nbytes, 0, 1024);
 curLength += nReadSize;
 curProcess = curLength / (float)totalLength;
 }
 fs.Flush();
 fs.Close();
 ns.Close();
 request.Abort();
 //assetbundle解压
 if (Path.GetExtension(localPath) == ".zip") {
 status = DownLoadUI.Status.Decompression;
 string Extension = Path.GetFileNameWithoutExtension(localPath).StartsWith("guanka") ? "":AppConst.ExtName;
 string localUnZipPath = Path.GetDirectoryName(localPath) + "/" + Path.GetFileNameWithoutExtension(localPath) + Extension;
 if (File.Exists(localUnZipPath)) {
 File.Delete(localUnZipPath);
 }
 CompressUtil.DeCompress(localPath, localUnZipPath, null);
 File.Delete(localPath);
 }
 status = DownLoadUI.Status.DownLoad;
 //更新状态
 curNum++;
 UpdateLocalFile(rfi);
 } catch (Exception e){
 Debug.LogError(e);
 if (fs != null)
 fs.Close();
 }
 }
 needDownload.Clear();
 downloadThread.Abort();
 }
 void CompareServerVersion(string serverVersion, string localVersion, List<ResourceFileInfo> needDownload) {
 string[] strs = File.ReadAllLines(localVersion);
 foreach (string s in strs) {
 string[] fs = s.Split('|');
 localList.Add(new ResourceFileInfo() { file = fs[0], md5 = fs[1] });
 }
 WWW www = new WWW(serverVersion);
 while (!www.isDone) { };
 if (www.isDone) {
 strs = www.text.Split(new string[] { "\n" }, StringSplitOptions.None);
 foreach (string s in strs) {
 if (string.IsNullOrEmpty(s)) continue;
 string[] fs = s.Split('|');
 serverList.Add(new ResourceFileInfo() { file = fs[0].Trim(), md5 = fs[1].Trim() });
 }
 }
 www.Dispose();
 foreach (ResourceFileInfo fileInfo in serverList) {
 ResourceFileInfo temp = localList.Where(rfi => rfi.file == fileInfo.file ＆＆ rfi.md5 == fileInfo.md5).FirstOrDefault();
 if (temp == null) {
 needDownload.Add(fileInfo);
 }
 }
 }
 void UpdateLocalFile(ResourceFileInfo fileInfo) {
 ResourceFileInfo temp = localList.Where(rfi => rfi.file == fileInfo.file).FirstOrDefault();
 if (temp == null) {
 localList.Add(fileInfo);
 } else {
 temp.md5 = fileInfo.md5;
 }
 System.Text.StringBuilder sb = new System.Text.StringBuilder();
 foreach (ResourceFileInfo rfi in localList)
 sb.Append(string.Format("{0}|{1}\n", rfi.file, rfi.md5));
 File.WriteAllText(dataPath + "files.txt", sb.ToString());
 }
 /// <summary>
 /// 资源初始化结束
 /// </summary>
 public void OnResourceInited() {
 curNum = 0;
 totalNum = LuaFileNum() + 2;
 status = DownLoadUI.Status.InitLua;
 DownLoadUI.Instance.Show(this, true);
 FileManager.Init();
 Facade.Instance.LuaManager.Start();
 status = DownLoadUI.Status.ReadLuaFile;
 //加载游戏
 Facade.Instance.LuaManager.DoFile("Logic/Network");
 curNum++;
 //加载网络
 Facade.Instance.LuaManager.DoFile("Logic/GameManager");
 curNum++;
 initialize = true;
 //初始化网络
 // NetManager.OnInit();
 object[] panels = CallMethod("LuaScriptPanel");
 //---------------------Lua面板---------------------------
 foreach (object o in panels) {
 string name = o.ToString().Trim();
 if (string.IsNullOrEmpty(name)) {
 continue;
 }
 //添加面板
 name += "Panel";
 Facade.Instance.LuaManager.DoFile("View/" + name);
 Debug.LogWarning("LoadLua---->>>>" + name + ".lua");
 curNum++;
 }
 status = DownLoadUI.Status.LoadSceneResource;
 //初始化完成
 StartCoroutine (CallInitOk ());
 }
 IEnumerator CallInitOk()
 {
 yield return new WaitForEndOfFrame ();
 DownLoadUI.Instance.Show(this, false);
 CallMethod("OnInitOK");
 }
 void Update() {
 if (Facade.Instance.LuaManager != null ＆＆ initialize) {
 Facade.Instance.LuaManager.Update();
 }
 }
 void LateUpdate() {
 if (Facade.Instance.LuaManager != null ＆＆ initialize) {
 Facade.Instance.LuaManager.LateUpate();
 }
 }
 void FixedUpdate() {
 if (Facade.Instance.LuaManager != null ＆＆ initialize) {
 Facade.Instance.LuaManager.FixedUpdate();
 }
 }
 /// <summary>
 /// 析构函数
 /// </summary>
 void OnDestroy() {
 if (Facade.Instance.LuaManager != null) {
 Facade.Instance.LuaManager.Destroy();
 Facade.Instance.LuaManager = null;
 }
 Debug.Log("~GameManager was destroyed");
 }
 class ResourceFileInfo {
 public string file;
 public string md5;
 }
 int LuaFileNum() {
 string luaViewPath = Util.DataPath + "lua/View";
 return Directory.GetFiles(luaViewPath).Length;
 }
 }
}

 上面有代码是整个游戏的入口的逻辑，代码量比较大，下面把重要的函数给大家介绍一下。在Awake函数中调用了Init函数。

 void Init() {
 //防止销毁自己
 DontDestroyOnLoad(gameObject);
 Facade.Instance.AddManager(ManagerName.Lua, new LuaScriptMgr());
 Facade.Instance.AddManager<PanelManager>(ManagerName.Panel);
 Facade.Instance.AddManager<MusicManager>(ManagerName.Music);
 Facade.Instance.AddManager<TimerManager>(ManagerName.Timer);
 // AppFacade.Instance.AddManager<NetworkManager>(ManagerName.Network);
 Facade.Instance.AddManager<ResourceManager>(ManagerName.Resource);
 Facade.Instance.AddManager<ThreadManager>(ManagerName.Thread);
 Facade.Instance.AddManager<ObjManager>(ManagerName.Obj);
 //释放资源
 CheckExtractResource();
 Screen.sleepTimeout = SleepTimeout.NeverSleep;
 Application.targetFrameRate = AppConst.GameFrameRate;
 }

 在Init函数中主要实现了几个功能：首先，该对象不被销毁；其次，添加管理类组件，方便其他类调用管理类的函数；再次，检查资源是否有更新的调用函数CheckExtractResource()；最后，设置游戏一直运行以及它的帧率限制，手机游戏的帧率一般设置30帧。在函数CheckExtractResource()中调用函数IEnumerator OnExtractResource()用于下载服务器的资源文本文件，决定是否有资源更新。在该函数中分了两步进行：如果是在编辑器模式下它会调用函数OnResourceInited()，这个函数的主要作用是加载本地的Lua脚本并对它们进行初始化操作。如果是在打包运行模式下，它会调用函数StartCoroutine(OnUpdateResource()); 用于资源的更新，启动线程下载资源，更新本地资源等功能。下载完毕调用函数public void OnResourceInited() 进行Lua脚本文件的加载，它会将已定义好的panel面板直接放置到内存中，同时准备创建面板，这样文件的整个流程就结束了。基于该框架开发的游戏如图12-13所示。

 [image:]
 图12-13　基于该框架开发的游戏

 战斗场景的游戏截图如图12-14所示。

 [image:]
 图12-14　热更新战斗场景的游戏截图

 12.7　小结

 热更新模块使用的是Lua脚本，在这里要感谢SimpleFrameWork的作者提供的框架，基于该框架许多游戏公司已经实现了非常多的游戏产品的上线运营。希望大家通过本章的学习首先能够理清思路，然后利用该框架实现一款简单的游戏，从而真正的掌握该框架的设计。在使用该框架时，可以将面板预先加载进来，然后将其设置为不可见，这样的好处是可以快速实现界面切换，因为Lua面板和脚本的加载速度相对来说比较慢，Lua加载的过程也是C#对其解释的过程。

 第13章

 移动端Shader技术

 不论什么类型的3D游戏都会涉及Shader编程技术，许多开发者对于Shader开发望而生畏，其实大可不必。Shader也是一种语言，相比于C++和C#更简单，它主要是用于处理模型的材质和场景的后期处理渲染。本章会从Shader的原理以及Shader执行流程图逐一给读者讲解，希望通过本章的学习，引导读者逐渐进入Shader编程领域。随着移动智能机的普及，玩家对移动端的美术品质要求也越来越高，美术品质的渲染与Shader技术有着必然的联系。由于移动端的GPU远远达不到PC端的显卡处理能力，所以在使用Shader编程时也要考虑其对性能的损耗。在移动端使用的Shader编程语言是OpenGL的glsl编程语言，因为OpenGL是可以跨平台使用的。大家可能见过OpenGLES，它是OpenGL库的缩略版，也称为简化版。在这里先介绍一下OpenGL，纠正一下大家对OpenGL的偏见，有人可能认为它是一个API（Application Programming Interface，应用程序编程接口），理由是它包含了一系列可以操作的图形、图像的函数。然而OpenGL本身并不是一个API，它仅仅是一个由Khronos组织制定并维护的规范。

 OpenGL库是用C语言写成的，同时支持多种语言的派生，但其内核仍是一个C库。由于C的一些语言结构不易被翻译成其他的高级语言，因此OpenGL开发的时候引入了一些抽象层。“对象(Object)”就是其中的一个。

 在OpenGL中一个对象是指一些选项的集合，它代表OpenGL状态的一个子集。比如，可以用一个对象来代表绘图窗口的设置，之后就可以设置它的大小、支持的颜色位数等。可以把对象看作一个C风格的结构体（Struct），代码如下所示。

struct object_name {
 GLfloat option1;
 GLuint option2;
 GLchar[] name;
};

 Shader定义的结构体和C语言的结构体类似，Shader编程也称为可编程流水线，它的含义是把在CPU计算的矩阵和顶点像素变换放到GPU中去执行，这样可以解放CPU并且充分利用GPU的并行计算处理能力，同时GPU对游戏场景的渲染能力得到了大大的增强，各种渲染都可以使用Shader编程实现，接下来介绍Shader处理流程——可编程流水线。

 13.1　可编程流水线

 可编程流水线是在固定流水线的基础上发展起来的，以前的硬件显卡没有GPU渲染时，电脑游戏是通过固定流水线实现3D游戏的，就是所有涉及的矩阵运算都在CPU中执行，具体可查看我已经出版的《手把手教你架构3D游戏引擎》一书，里面有专门介绍固定流水线的架构设计。

 本章主要是围绕可编程流水线实现的Shader编程，就是把以前在CPU中执行的矩阵换算移植到GPU中执行。这样可以把CPU释放出来做其他事情，比如让CPU处理加载模型、加载材质、播放特效、播放声音等。为了能让大家更清楚的理解可编程流水线，我们画出了可编程流水线的示意图，如图13-1所示。

 [image:]
 图13-1　可编程流水线示意图

 从图13-1中可以看出，3D游戏通常使用的图形学编程无非是在OpenGL和Direct3D之间，因为它是连贯程序与GPU的通道，GPU编程是在Direct3D和OpenGL编程语言基础上发展起来的，可编程流水线流程首先进行的是将要变换顶点的模型放到GPU的顶点处理器中处理。顶点变换在可编程渲染流水线中属于第一个处理阶段，这个阶段对顶点进行了一系列的矩阵变换，包括了世界矩阵变换、投影矩阵变换、视口矩阵变换等。这些计算都是在顶点着色器中进行的，这个阶段还没有将物体绘制到屏幕上。顶点着色器计算产生的结果是作为片段着色器的输入值，下一步就是将顶点处理器传入片段着色器进行光栅化操作。另外，贴图纹理坐标的产生，照亮顶点以及决定顶点的颜色，都是在片段着色器这个阶段进行的。为了让读者理解可编程流水线架构，请参考如图13-2所示的效果图。

 [image:]
 图13-2　可编程流水线执行效果图

 图13-2中的茶壶顶点首先与顶点着色器打交道，然后将计算的结果传给片段着色器进行绘制，最后在屏幕上显示出来。接下来分别介绍顶点着色器和片段着色器。

 13.2　顶点着色器

 顶点着色器是在GPU上运行的小程序，顾名思义，顶点着色器是用来处理顶点数据的。一个顶点着色器就是一个处理顶点的小程序。可以将几何图形顶点数据放在VertexBuffer中，然后将其上传至GPU。下面就用GLSL来编写一个顶点着色器，顶点着色器程序将处理VertextBuffer中的每一个顶点。以模型文件c3t为例给大家展示一下模型文件内容，如图13-3所示。

 [image:]
 图13-3　模型文件内容

 该模型文件有顶点位置、法线、切线以及纹理坐标数据，这些数据都要传给顶点着色器去处理。模型材质要实现高光、法线效果，这就需要将模型的数据发送给顶点着色器，最后片段着色器再将顶点着色器处理的结果显示出来，模型处理的效果如图13-4所示。

 [image:]
 图13-4　模型处理的效果

 顶点着色器的输入是一个或多个顶点属性（Vertex Attribute）组成的VertexBuffer。VertexBuffer中的顶点应至少指出顶点的位置属性、法线属性、UV坐标等，模型的顶点位置属性通常指的是每个3D模型（模型都有其自身的原点）本身的坐标，也就是模型局部坐标。顶点着色器将这些位置信息最终转换为屏幕位置，以便正确的显示。顶点着色器将VertexBuffer中的数据作为输出（最终经过处理的），以便其在光栅化单元进行插值，然后作为输入传递给片段着色器。

 顶点着色器常常用来对场景中的几何图形坐标进行矩阵变换，模型顶点的坐标是通过VertexBuffer输入到顶点着色器中，顶点着色器会将VertexBuffer中的所有顶点进行矩阵变换。骨骼动画也是在顶点着色器中进行运算的，顶点着色器执行流程如图13-5所示。

 [image:]
 图13-5　顶点着色器执行流程

 模型的每个顶点都会调用一次顶点着色器，所以在渲染一个三角形时顶点着色器需要被调用三次，依此类推，如果模型是由多个顶点组成的，那么就需要调用顶点着色器多次。

 顶点着色器完全是可编程的，读者可通过自己喜欢的任何方式修改几何形状。例如，一个修改顶点位置的典型应用是骨头的创建：可以定义一组骨头，以及一个皮肤（网格）。当骨头旋转时，它们位于一个层次结构中，这么做的最佳方式是将骨头的旋转（转换）传递给一个顶点着色器，让顶点着色器修改皮肤，以便它看起来得到了恰当的绘制和变形。下面开始讲解片段着色器。

 13.3　片段着色器

 片段着色器，可以简单地将每个片段（fragment）想象成屏幕上的每一个像素点，因此每生成一个像素片段着色器就被会调用一次。顶点着色器和像素着色器二者充当不同的角色，片段着色器用于为每个像素设置相关的颜色。简单地说，顶点着色器就是处理顶点相关的信息，片段着色器就是处理画面的颜色信息。

 片段的数据内容主要由顶点着色器确定，事实上，顶点着色器有能力将顶点属性参数作为它的输出传递。光栅化所做的是将顶点着色器输出的针对每个顶点的数据插入到三角形中，使屏幕上的每个片段（三角形像素）获得这个特定像素的正确值。

 片段着色器是可编程管道中的最核心的部分，其作用就是计算各种各样的三角形像素颜色，并为着色顶点图形（vertex-colored geometries）计算顶点属性颜色，同时为纹理图形计算纹理及相关的UV纹理坐标。

 现代3D游戏中令人惊叹的3D效果都是用片段着色器来生成的，比如水体环境映射之类的反射效果也都是由片段着色器完成的。片段着色器能生成世界上几乎所有的光影特效，片段着色器决定了你在屏幕上能看到什么，所以片段着色器才是影响渲染的核心代码。我实现的可编程流水线渲染效果如图13-6所示。

 [image:]
 图13-6　可编程流水线渲染效果

 该场景水面的反射和折射效果都体现了片段着色器的重要作用，当然也不能忽略顶点着色器的功能，下面结合案例给大家分析一下Shader。

Shader "FX/Flare" {
Properties {
 _MainTex ("Particle Texture", 2D) = "black" {}
}
SubShader {
 Tags {
 "Queue"="Transparent"
 "IgnoreProjector"="True"
 "RenderType"="Transparent"
 "PreviewType"="Plane"
 }
 Cull Off Lighting Off ZWrite Off Ztest Always Fog { Mode Off }
 Blend One One
 Pass {
 CGPROGRAM
 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"
 sampler2D _MainTex;
 fixed4 _TintColor;
 struct appdata_t {
 float4 vertex : POSITION;
 fixed4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };
 struct v2f {
 float4 vertex : SV_POSITION;
 fixed4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };
 float4 _MainTex_ST;
 v2f vert (appdata_t v)
 {
 v2f o;
 o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.color;
 o.texcoord = TRANSFORM_TEX(v.texcoord, _MainTex);
 return o;
 }
 fixed4 frag (v2f i) : SV_Target
 {
 fixed4 col;
 fixed4 tex = tex2D(_MainTex, i.texcoord);
 col.rgb = i.color.rgb * tex.rgb;
 col.a = tex.a;
 return col;
 }
 ENDCG
 }
}
}

 逐行分析上面代码的含义，读者无论是自己写Shader，还是修改别人的Shader，在写或修改之前一定要弄懂每行的作用。下面开始分析Shader代码，第一行表示的是Shader的名字，第二行的内容如下所示。

Properties {
 _MainTex ("Particle Texture", 2D) = "black" {}
}

 在Properties中只有一行代码表示的是输入材质，效果如图13-7所示。

 [image:]
 图13-7　Shader属性材质界面

Tags {
 "Queue"="Transparent"
 "IgnoreProjector"="True"
 "RenderType"="Transparent"
 "PreviewType"="Plane"
 }
 Cull Off Lighting Off ZWrite Off Ztest Always Fog { Mode Off }

 上面的Tags可以告诉硬件应该什么时候调用你的Shader。Tags参数的含义：Queue表示的是渲染队列，RenderType表示的是渲染类型等，可以根据情况设置很多参数。接下来针对的是模型的设置，比如模型的双面显示，深度缓存关闭等。然后为GPU定义pass通道，在pass通道中定义了顶点着色器和片段着色器，CGPROGRAM表示的CG程序，它和END是成对出现的，它们之间的代码是给GPU处理的。该Shader文件还引用了Unity自己的Shader库，#include "UnityCG.cginc"，因为在下面的函数中会调用库函数，比如：tex2D、mul等。下面两个是变量的声明。

 sampler2D _MainTex;
 fixed4 _TintColor;

 其中sampler2D定义的变量名字与Properties中定义的变量名字是一样的，表示的是外面传进来的图片。定义两个结构体，分别表示顶点着色器的参数和片段着色器的参数，结构体如下所示。

struct appdata_t {
 float4 vertex : POSITION;
 fixed4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };

 顶点着色器使用的结构体内容包括：顶点位置、颜色、纹理坐标。

 struct v2f {
 float4 vertex : SV_POSITION;
 fixed4 color : COLOR;
 float2 texcoord : TEXCOORD0;
 };

 片段着色器的结构体也包括：顶点位置、颜色、纹理坐标。

 下面介绍一下顶点着色器处理的内容，函数代码如下。

 v2f vert (appdata_t v)
 {
 v2f o;
 o.vertex = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.color;
 o.texcoord = TRANSFORM_TEX(v.texcoord, _MainTex);
 return o;
 }

 顶点着色器函数中mul(UNITY_MATRIX_MVP, v.vertex)表示的是对顶点进行模型、世界、投影变换。然后将得到的结果返回给片段着色器，接下来介绍片段着色器函数如下。

fixed4 frag (v2f i) : SV_Target
 {
 fixed4 col;
 fixed4 tex = tex2D(_MainTex, i.texcoord);
 col.rgb = i.color.rgb * tex.rgb;
 col.a = tex.a;
 return col;
 }

 片段着色器函数的参数就是顶点着色器计算的结果，它是作为参数传入的。在片段着色器中有函数tex2D(_MainTex, i.texcoord)，该函数的作用是对输入的纹理根据纹理坐标取样，然后将获得到的颜色通过下面的公式计算出，最后将返回值输出到屏幕上，并显示出来。

col.rgb = i.color.rgb * tex.rgb;
col.a = tex.a;

 读者可以自行放到材质中体验一下，熟悉了每行代码后可以在原有代码的基础上修改或者增加以满足需求，下面给大家介绍Shader案例。

 13.4　Shader案例分享

 上节介绍了Shader的语法基础知识，接下来介绍在材质渲染中经常使用的技术——Shader，相信大家在做游戏时，肯定会用到这方面的Shader。在讲解Shader之前，先把渲染效果给大家展示一下，如图13-8所示。

 [image:]
 图13-8　Unity模型渲染效果

 Shader不仅实现了角色的高光、法线、反射，而且实现了描边效果，下面是完整的代码。

Shader “Game/Reflective/SpecularRim" {
Properties {
 _Color ("Main Color", Color) = (1,1,1,1)
 _SpecColor ("Specular Color", Color) = (0.5, 0.5, 0.5, 1)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.078125
 _ReflectColor ("Reflection Color", Color) = (1,1,1,0.5)
 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {}
 _Cube ("Reflection Cubemap", Cube) = "_Skybox" { TexGen CubeReflect }
 _BumpMap ("Normalmap", 2D) = "bump" {}
 _Cutoff ("Alpha cutoff", Range(0,1)) = 0.5
 _RimColor ("Rim Color", Color) = (0.26,0.19,0.16,0.0)
 _RimPower ("Rim Power", Range(0.5,8.0)) = 3.0
}
SubShader {
 LOD 300
 Tags { "RenderType"="Gemoetry" }
CGPROGRAM
#pragma surface surf Lambert
#pragma target 3.0
#pragma exclude_renderers d3d11_9x
 sampler2D _MainTex;
 samplerCUBE _Cube;
 sampler2D _BumpMap;
 fixed4 _Color;
 fixed4 _ReflectColor;
 half _Shininess;
 float _RimPower;
 float4 _RimColor;
 struct Input {
 float2 uv_MainTex;
 float3 worldRefl;
 float3 viewDir;
 float2 uv_BumpMap;
 INTERNAL_DATA
};
void surf (Input IN, inout SurfaceOutput o) {
 fixed4 tex = tex2D(_MainTex, IN.uv_MainTex) * _Color;
 fixed4 c = tex * _Color;
 o.Albedo = c.rgb;
 o.Gloss = tex.a;
 o.Specular = _Shininess;
 o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap));
 float3 worldRefl = WorldReflectionVector (IN, o.Normal);
 fixed4 reflcol = texCUBE (_Cube, worldRefl);
 reflcol *= tex.a;
 half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal));
 o.Emission = reflcol.rgb * _ReflectColor.rgb + _RimColor.rgb * pow (rim, _RimPower);
 o.Alpha = reflcol.a * _ReflectColor.a;
 o.Specular *= o.Alpha * _Shininess;
}
ENDCG
}
FallBack "Reflective/VertexLit"
}

 在这里我们只介绍重点的代码，该Shader文件最重要的是函数。

void surf (Input IN, inout SurfaceOutput o) {
 fixed4 tex = tex2D(_MainTex, IN.uv_MainTex) * _Color;
 fixed4 c = tex * _Color;
 o.Albedo = c.rgb;
 o.Gloss = tex.a;
 o.Specular = _Shininess;
 o.Normal = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap));
 float3 worldRefl = WorldReflectionVector (IN, o.Normal);
 fixed4 reflcol = texCUBE (_Cube, worldRefl);
 reflcol *= tex.a;
 half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal));
 o.Emission = reflcol.rgb * _ReflectColor.rgb + _RimColor.rgb * pow (rim, _RimPower);
 o.Alpha = reflcol.a * _ReflectColor.a;
 o.Specular *= o.Alpha * _Shininess;
}

 该函数使用了Unity库提供的结构体SurfaceOutput。该结构体表示如下。

 struct SurfaceOutput {
 half3 Albedo;
 half3 Normal;
 half3 Emission;
 half Specular;
 half Gloss;
 half Alpha;
 };

 	 Albedo：漫反射颜色。

 	 Normal：法线。

 	 Emission：自发光颜色。

 	 Specular：镜面反射系数。

 	 Gloss：亮度系数。

 	 Alpha：透明值。

 	 边缘着色函数half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal))。

 	 材质立方体反射函数fixed4 reflcol = texCUBE (_Cube, worldRefl)。

 	 自发光函数o.Emission = reflcol.rgb * _ReflectColor.rgb + _RimColor.rgb * pow (rim, _RimPower)。

 其他的相对来说比较简单，这里就不一一解释了，下面将Shader脚本拖放到材质上面，如图13-9所示。

 [image:]
 图13-9　模型材质设置

 13.5　小结

 Unity提供了很多Shader样例，开发者不必自己从头编写，可以在现有语句的基础上修改，前提是必须要知道每条语句的含义，这样才能有目的的修改，而不是胡乱修改。我研发了一套3D引擎，功能还不是特别完备，但是在渲染方面做得相对来说比较完善，实现了高光、法线、反射效果，其中模型含有四张图片：高光Specular图片、法线Normal图片、反射Reflective图片。此外，还有一张Diffuse图片。渲染效果如图13-10和图13-11所示。

 	[image:]
 	[image:]

 	图13-10　自己研发的引擎的渲染效果
 	图13-11　自己研发的引擎的渲染效果

 第14章

 游戏开发经验分享

 关于游戏开发经验，网上资料很多，在这里总结的是我在实际项目开发中遇到的问题以及在开发中使用的一些核心技术，学习编程首先要从程序调试开始，不会调试的程序员永远学不好编程，只要是人为的因素都会有Bug出现，程序员只有通过调试才能解决这些Bug，下面先从调试开始讲起。

 14.1　关于调试经验分享

 不论开发什么样的程序，首要的是开发者必须会调试，这也是作为程序开发者必备的技能，不会调试的程序员，就不是一个好程序员。任何人写程序都会出现Bug，遇到问题要学会解决问题。在使用Unity开发程序时，经常会遇到在PC端运行程序没有问题，但是将程序打包成Android包安装在手机上时出现各种莫名其妙的Bug，为了解决移动端的Bug，开发者也要知道如何在移动端调试程序。在使用mono编辑器或者Visual Studio编辑器调试移动端程序时，需要在手机端安装一个Unity官方提供的软件Unity Remote，在手机端安装好了后，在编译Unity的Android包时要进行如图14-1所示的设置。

 [image:]
 图14-1　Unity移动端调试设置界面

 这样编译的apk包在安装到手机端时，运行手机端程序可以在mono编辑器中查看到硬件的名字，如图14-2所示。

 [image:]
 图14-2　编辑器与移动端硬件绑定界面

 设置好了以上信息后，运行手机端的程序，就可以在mono编辑器或者Visual Studio编辑器中断点调试了。也可以连接Profiler调试工具，查看程序内存分配和CPU的占用情况，操作界面如图14-3所示，它可以查看手机运行的情况，这是一种在移动端调试的方式。

 [image:]
 图14-3　Profiler调试界面

 第二种调试方式，Android SDK的调试。它可以通过Eclipse编辑器的DDMS查看手机运行的报错问题，在Eclipse开发工具的右上角可以轻松查看到DDMS。大家可以自行下载Eclipse体验一下，它可以查看到游戏运行时的空对象错误，非常实用。

 第三种调试方式是通过adb logcat命令行查看Unity的日志信息，打开“运行”，在其中输入“cmd”打开dos的操作界面，然后输入adb logcat-s Unity命令，操作方式如图14-4所示。

 [image:]
 图14-4　命令行调试

 如果不知道如何使用，可以通过命令查看帮助说明，如果要把日志信息保存到手机卡上，可以输入命令adb logcat -f /sdcard/log.txt，这样log.txt就被保存到手机卡上了，可以查看或者导出，当然也可以保存到电脑上。掌握了以上三种调试方式，就可以解决任何在移动端运行无法解决的问题，接下来介绍移动端游戏防破解技术。

 14.2　移动端游戏防破解技术

 现在用Unity引擎开发的游戏产品越来越多，很多上线的游戏被破解了。游戏被破解的方式分两种：一种是游戏代码的破解，另一种是游戏计费文件的破解。关于代码的破解网上有很多相关的资料，这里就不一一介绍了。防代码破解一般采用的技术是代码混淆的方式。其实对于游戏公司来说最重要的是关于游戏数据的修改，以及关于计费文件的修改，这二者关乎公司的直接利益。游戏的基础数据通常都会放到本地，这样就会被一些玩家通过修改本地文件的方式去改写数据，防止本地数据文件的修改，采用的是服务器验证的方式，服务器数据库只保存变化的数据，如果一定要放在本地需要将本地的数据文件进行加密处理。通常采用的是SHA512算法或者是MD5加密方式。本节的加密方式是对项目的基础数据文件采用SHA512算法加密方式处理的，核心代码如下所示。

 //加密算法
 public static string GetSHA512Password(string password)
 {
 byte[] bytes = Encoding.UTF7.GetBytes(password);
 byte[] result;
 SHA512 shaM = new SHA512Managed();
 result = shaM.ComputeHash(bytes);
 StringBuilder sb = new StringBuilder();
 foreach (byte num in result)
 {
 sb.AppendFormat("{0:x2}", num);
 }
 return sb.ToString();
 }

 函数的参数是开发者自己定义的数据串，经过函数的处理后被称为加密的密码，然后将生成的密码字符串作为输入文本文件zip压缩的密码，压缩zip文件函数代码如下所示。

 protected void SaveConfigXMLToZip()
 {
 using (ZipFile zipFile = new ZipFile(Encoding.UTF8))
 {
 zipFile.Password = configurationZipPwd;
 zipFile.AddEntry(configurationFile, configuration.bytes);
 zipFile.AddEntry(localizationFile, localization.bytes);
 stringzipPath=Path.Combine(Application.persistentDataPath, configurationZipFile);
 LogTool.Log("Saving configuration in \"" + zipPath + "\"");
 zipFile.Save(zipPath);
 }
 }

 程序的压缩是在PC端的编译模式下运行时压缩的，压缩完成后可以将其上传到资源服务器，程序运行时下载该文件然后读取其压缩格式，压缩文件的格式是xml文本文件格式。所以核心代码里面有对XML文件的解释，如果你使用的是Json文件可以更改成Json文件的解析函数，函数如下所示。

protected void TryLoadingXMLsFromZip()
 {
 string zipPath = Path.Combine(Application.persistentDataPath, configurationZipFile);
 if (!File.Exists(zipPath))
 {
 LogTool.Log("Configuration not found!");
 this.ParseConfigXML(configuration.text, false);
 this.ParseLocalizationXML(localization.text, false);
 return;
 }
 using (ZipFile zipFile = new ZipFile(zipPath, Encoding.UTF8))
 {
 zipFile.Password = configurationZipPwd;
 ZipEntry xmlConfEntry = zipFile[configurationFile],
 xmlLocaleEntry = zipFile[localizationFile];
 if (null == xmlConfEntry || null == xmlLocaleEntry)
 {
 LogTool.Log("Downloaded configuration INVALID!");
 this.ParseConfigXML(configuration.text, false);
 this.ParseLocalizationXML(localization.text, false);
 return;
 }
 using (MemoryStream ms = new MemoryStream())
 {
 xmlConfEntry.Extract(ms);
 string xmlText = Encoding.UTF8.GetString(ms.GetBuffer(), 0, ms.GetBuffer().Length);
 this.ParseConfigXML(xmlText, true);
 ms.Seek(0, SeekOrigin.Begin);
 xmlLocaleEntry.Extract(ms);
 xmlText = Encoding.UTF8.GetString(ms.GetBuffer(), 0, ms.GetBuffer().Length);
 this.ParseLocalizationXML(xmlText, true);
 }
 }
 }

 以上是关于文件的加密方式，需要在Unity中加入zip压缩库。下面介绍关于计费文件的破解，原理就是绕过计费文件，屏蔽计费，这样的破解对公司造成的损失是很大的。为了预防此类方式的破解，很多知名IT公司给开发者提供了防破解软件，常用的有360防破解、腾讯防破解以及爱游戏防破解等。这些防破解软件就是把Android包用该软件进行加固处理，这样不论什么软件都无法修改计费文件，效果如图14-5所示。

 [image:]
 图14-5　360防破解软件界面

 经过该软件处理的包，极大的预防了游戏包体的破解。该软件还有签名功能，使用它能有效地防止计费文件被破解。下面介绍另一个让程序员头疼的问题——减小包体的大小。

 14.3　减小包体的大小

 游戏包体的大小一直是影响游戏玩家体验的重要因素。不论做什么类型的游戏，首要的任务就是把包体大小缩减到一定范围内，对于玩家来说40M是一道坎，游戏都要朝着这个目标努力。包体的大小主要包括美术资源和代码，代码占用量非常小，可以忽略。美术资源的大小直接决定了包体的大小，所以要减小包体必须从美术资源入手。美术资源主要包含两部分：模型和材质贴图，模型的面数要适当控制，这取决于美术的品质要求。

 下面介绍一下如何减小贴图的大小。减小贴图的大小常用的处理方式是将不带Alpha通道的贴图存为jpg格式，而将带有Alpha通道的贴图存成png格式。针对UI和3D场景美术建立通用的材质库，这样可以规范和节省美术资源。由于Unity打包图集固有的缺陷，可以采用Texture Packer工具打包解决其带来的问题。Unity图集打包存在主要的问题是，如果定义好了图集大小，那么这个图集不论是否满了，其在内存中占有的大小都是4M。Texture Packer工具会根据贴图的数量自动打成适当大小的图集供程序使用，从而避免这个问题。

 另一个辅助检查图片大小的工具是BuildReport，在程序编译成Android的apk包时，要进行设置，效果如图14-6所示。通过图14-6可以看到包体的总量大小以及哪些资源占用量比较大。可以针对性的修改，帮助我们压缩图片的大小。

 [image:]
 图14-6　BuildReport工具运行界面

 BuildReport资源分布的运行效果如图14-7所示。

 [image:]
 图14-7　BuildReport资源分布的运行界面

 减小包体需要程序和美术的共同努力，找到问题所在。这就要求在游戏开发初期定义好规范，这样在程序优化后期可以减少很多麻烦。对于使用的库文件dll，可以在Assets目录下建一个link.xml文件，减少不需要的dll文件也可以减小包体，link文件内容样例如下所示。

<linker>
<assembly fullname="System.Web.Services">
<type fullname="System.Web.Services.Protocols.SoapTypeStubInfo" preserve="all"/>
<type
fullname="System.Web.Services.Configuration.WebServicesConfigurationSectionHandler"
preserve="all"/>
</assembly>
<assembly fullname="System">
<type fullname="System.Net.Configuration.WebRequestModuleHandler" preserve="all"/>
<type fullname="System.Net.HttpRequestCreator" preserve="all"/>
<type fullname="System.Net.FileWebRequestCreator" preserve="all"/>
</assembly>
<assembly fullname="mscorlib">
<type fullname="System.AppDomain" preserve="fields"/>
<type fullname="System.InvalidOperationException" preserve="fields">
<method signature="System.Void .ctor()"/>
</type>
<type fullname="System.Object" preserve="nothing">
<method name="Finalize"/>
</type>
</assembly>
</linker>

 其中，参数all表示保留所有类型与该库相关的库，fields仅保留该类型相关的库，nothing仅保留该类型库，这个可根据需求对不需要的dll进行设置。

 总之，优化的方式很多，比如对资源本身的优化，包括顶点数量和材质数量。开发项目时需要对项目进行优化，这个优化包括很多方面，在这里给大家介绍一下：首先要考虑的问题是资源的优化，资源优化包括模型的顶点数量、材质数量、NGUI使用的图集大小、粒子特效数量。这些决定了包的大小，这是要优先要考虑的。其次要考虑的问题是程序的编写是否合理，资源是不是及时的删除或者清空，Shader渲染的运用是不是对于显卡要求比较高。优化程序伴随着游戏开发的始终。代码方面的优化建议开发者读一读《代码重构》一书。

 14.4　动态对象资源的优化

 不论手游开发还是端游开发，优化自始至终伴随着游戏产品的开发。Unity引擎对于资源优化处理的并不是很好，引擎内部只处理了静态对象的优化，对于动态对象并没有去处理，这需要开发者通过编程去实现动态优化的处理。程序优化主要涉及程序运行的效率，游戏运行出现卡顿以及内存溢出，编写代码要注意内存是否及时的释放掉了，影响游戏内存的因素很多，比如代码中打印的Log是否过多，是否有死循环的代码，以及程序切换场景时是否及时释放内存等。

 优化的事情并不只是程序的任务，也需要美术协助。例如，遇到游戏运行出现卡帧现象时，借助Unity的Profiler工具查看内存占用情况，如图14-8所示。单击CPU Usage内存中的曲线可以帮助判断程序出现卡帧，下方的Camera.Render 目录下对应的是Unity代码中的具体函数，从而帮助开发者非常方便地找到问题的所在，然后根据找到的问题检查程序逻辑是否有问题。单击Memory可以查看资源在内存中的占用情况，可以针对性的对资源进行处理，如图14-9所示。首先要检查美术资源包括面片数量、材质大小，最后检查一下运用在物体上的Shader，是否有比较好的Shader运用，比如后处理效果Bloom、Blur等。下面主要是针对游戏中使用的资源进行的优化，同时结合案例讲解如何降低DrawCall的数量，达到优化的目的。程序方面要具体问题具体分析，在这里就不一一列举了。

 [image:]
 图14-8　查看CPU函数运行界面

 [image:]
 图14-9　查看内存占用界面

 由于策划需求，美术经常会在游戏场景中摆放一些具有骨骼动画的物件道具用于场景装饰，如果这些场景物件多了，DrawCall会增长的很快，严重影响程序运行效率。不论你是动态实例化生成还是直接拖放到场景中，DrawCall都会增长。面对这样的需求该如何处理呢？因为Unity只提供了静态对象的优化，我们可以直接勾选Static选项，而对动态对象的优化只能自己想办法解决，读者可以先做个实验，只在场景中放一个具有骨骼动画的物体，观察一下它的DrawCall和FPS运行帧率各是多少。场景中是一艘带有骨骼动画的船，程序运行时的DrawCall是10，FPS是76.8，如图14-10所示。

 [image:]
 图14-10　单个带有骨骼动画的物体展示

 接下来增加两艘同样的船，如图14-11所示，此时，DrawCall是25，FPS是76.8，虽然DrawCall不是成倍增长，但是明显增加了一倍多。通过这个案例可以想象如果这些装饰物过多，对程序还是有影响的。面对这种类型的问题，先说一下解决问题的思路，首先分析一下：这些物体的共同点是带有相同的骨骼动画，而且材质也是一样的。

 [image:]
 图14-11　多个带有骨骼动画的物体展示

 说一下解决问题的思路，如果把这些船的Mesh和Skeleton合并成一个物体，会出现什么情况呢？对于合并成的物体需要自己创建一个新的Mesh，然后对Mesh进行填充。下面先把代码分享一下，后面会给大家讲案例，完整的优化代码如下所示。

using UnityEngine;
using System.Collections.Generic;
public class CombineDrawCall : MonoBehaviour {
 //用于初始化
 void Start () {
 CombineToOne(this.gameObject);//调用函数接口
 }
 //合并网格和动作
 public static void CombineToOne(GameObject _go)
 {
 SkinnedMeshRenderer[] _smr = _go.GetComponentsInChildren<SkinnedMeshRenderer>();
 List<CombineInstance> lcom = new List<CombineInstance>();
 List<Material> lmat = new List<Material>();
 List<Transform> ltra = new List<Transform>();
 for(int i = 0;i < _smr.Length; i++)
 {
 lmat.AddRange(_smr[i].materials);
 ltra.AddRange(_smr[i].bones);
 for(int sub = 0; sub < _smr[i].sharedMesh.subMeshCount; sub++)
 {
 CombineInstance ci = new CombineInstance();
 ci.mesh = _smr[i].sharedMesh;
 ci.subMeshIndex = sub;
 lcom.Add(ci);
 }
 Destroy(_smr[i].gameObject);
 }
 SkinnedMeshRenderer _r = _go.GetComponent<SkinnedMeshRenderer>();
 if (_r == null)
 _r = _go.AddComponent<SkinnedMeshRenderer>();
 _r.sharedMesh = new Mesh();
 _r.bones = ltra.ToArray();
 _r.materials = new Material[] { lmat[0] };
 _r.rootBone = _go.transform;
 _r.sharedMesh.CombineMeshes(lcom.ToArray(), true, false);
 }
}

 以上代码实现了动态对象的优化处理，在使用代码时，首先要建立一个空对象作为父类，把要优化的动态对象放到父类下面作为子类，当然你也可以用一个动态对象作为父类，其他动态对象挂到它的下面。优化的动态对象需要带有自己的骨骼动画，材质最好只有一张贴图，当然多张也是可以的。优化的对象是同一个对象，这一般适用于装饰场景的物件，有的人可能将其应用到游戏中动态生成的怪物，这是不可以的，因为优化的本质是将所有要优化的动态对象组合成一个大的对象，所以不适合怪物的生成。下面将其应用到Unity中给大家展示一下运行效果。直接在场景中放了五艘船，同时把上面写好的代码CombineDrawCall.cs直接挂到GameObject对象上，如图14-12所示。

 [image:]
 图14-12　优化代码挂接

 它的运行效果如图14-13所示，DrawCall和FPS都有所优化，DrawCall是13，与放置一个物体的DrawCall结果类似，FPS是81.6略有提高，达到了优化的目的。

 [image:]
 图14-13　优化运行效果

 14.5　多线程资源下载技术

 在游戏开发中经常会使用多线程去处理，比如在3D游戏开发中，对于大地形的加载，通常是使用分块的方式。用于加载魔兽世界地图场景的3D游戏引擎使用的技术就是多线程加载，在内存里放置9块地形，在缓存里面放置16块地形用于与内存进行地形块的交换。以前开发过端游，主线程负责地形的加载，单独开一个线程用于地形的卸载。在开发中，Unity只有一个主线程运行，也就是单线程，但是可以在Unity中使用多线程加载资源。当我们同时要处理很多事情并且与Unity的对象没有交互时，可以用thread多线程，否则只能使用协成coroutine。在多处理器的计算机上可以做到多个线程的真正同步，在Unity中，你仅能从主线程中访问Unity的组件对象和Unity系统调用，任何企图访问这些对象的第二个线程都将失败并引发错误，这是一个需要我们重视的限制。下面介绍一下实现多线程的思路，以及对资源的断点续传。

 本节使用的多线程是用于处理游戏资源的下载，意思是在程序运行时，在用户不知情的情况下在后台开启一个线程下载游戏资源。首先将需要下载的资源打包用zip压缩，主要目的是减少资源包体的大小，然后借助工具生成md5 的加密文件，名字为VersionMD5.xml，如果游戏资源有所改变，要重新命名生成的加密文件为VersionMD5_1.0.xml，并将其放到FTP资源服务器上。

 游戏启动时，首先判断是否已连接WiFi。如果已开启，则自动启动资源下载。程序会在游戏后台打开线程去下载资源，先从服务器上下载版本控制文件VersionMD5_1.0.xml通过文件名和版本号，对比本地文件的VersionMD5.xml，确定是否需要更新资源，如有不同，则加入下载列表。如果没有打开WiFi，要保证游戏在一定时间内能正常运行，等运行到游戏需要加载的服务器资源时，如果本地无资源加载，就开启数据流量使用提醒强制下载，下载结束后游戏就可以继续运行了。多线程断点续传下载流程如图14-14所示。

 [image:]
 图14-14　多线程断点续传下载流程

 根据上面的流程图，我们把完整的代码展示一下。

using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System.Xml;
using System.IO;
using System.Net;
using System.Threading;
using System;
public class ResUpdate {
 public static ResUpdate Instance;
 static public string MAIN_VERSION_FILE = "VersionMd5.xml";
 static string SERVER_RES_URL;
 static string LOCAL_RES_OUT_PATH = "";
 public static string LOCAL_DECOMPRESS_RES = "";
 public static Dictionary<string , ResReference> LocalResOutVersion = new Dictionary<string , ResReference>();//本地包外资源
 static Dictionary<string , int> ServerResVersion = new Dictionary<string , int>();//服务器资源版本号
 static List<string> NeedDownFiles = new List<string>();
 //本地资源包信息
 public struct ResReference {
 public bool isFinish;//是否存在包外
 public bool isUnZip;//是否解压DownFile
 public int version;
 public ResReference (bool isFinish , int version , bool isUnZip) {
 this.isFinish = isFinish;
 this.version = version;
 this.isUnZip = isUnZip;
 }
 }
 public int updatedNum = 0;
 public int totalNeedUpdateNum = 0;
 public long curFileTotalNum = 0;
 public long curFileNum = 0;
 public Thread downloadThread;
 static ResUpdate () {
 Instance = new ResUpdate();
#if UNITY_ANDROID
 SERVER_RES_URL="http://127.0.0.1/AssetBundle/Android/";
#elif UNITY_IPHONE
 SERVER_RES_URL="http://127.0.0.1/AssetBundle/IOS/";
#elif UNITY_EDITOR || UNITY_STANDALONE_WIN
 SERVER_RES_URL="http://127.0.0.1/AssetBundle/Windows32/";
#endif
 System.Net.ServicePointManager.DefaultConnectionLimit = 512;//
 LOCAL_RES_OUT_PATH = Application.persistentDataPath + "/AssetBundle/";
 LOCAL_DECOMPRESS_RES = LOCAL_RES_OUT_PATH + "/DeCompress/";
 SERVER_RES_URL += SGConstant.mSTR_CURVERSION + "/";
 }
 private static bool isDownload = false;
 /// <summary>
 /// 启动下载程序
 /// </summary>
 /// <param name="isAuto">是否自动（自动只允许Wi-Fi下载）</param>
 public static void StartDownLoad (bool isAuto = true) {
 if (isAuto) {
 if (AndroidSDKTool.GetNetWorkType() == NetworkType.WIFI) {
 Debug.Log("start download resource");
 if (!isDownload) {
 CoroutineManager.DoCoroutine(Instance.LoadVersion());
 }
 } else {
 Debug.Log("no wifi");
 }
 } else {
 if (!isDownload) {
 CoroutineManager.DoCoroutine(Instance.LoadVersion());
 }
 }
 }
 //加载版本文件
 IEnumerator LoadVersion () {
 isDownload = true;
 //清空变量
 //LocalResOutVersion.Clear();
 ServerResVersion.Clear();
 NeedDownFiles.Clear();
 string serverMainVersion = "";
 //读取本地配置文件
 string localVersion = System.IO.Path.Combine(LOCAL_RES_OUT_PATH , MAIN_VERSION_FILE);
 if (File.Exists(localVersion))
 Instance.ParseLocalVersionFile(localVersion , LocalResOutVersion);
 //取得服务器版本
 string versionUrl = SERVER_RES_URL + "VersionMd5_1.0/" + MAIN_VERSION_FILE;
 WWW sw = new WWW(versionUrl);
 yield return sw;
 if (!string.IsNullOrEmpty(sw.error))
 Debug.LogError("Server Version ..." + sw.error);
 else {
 serverMainVersion = sw.text;
 Debug.Log(serverMainVersion);
 ParseVersionFile(serverMainVersion , ServerResVersion);
 }
 if (string.IsNullOrEmpty(sw.text)) {
 Debug.LogError("无法连接服务器");
 //加载下一个场景
 } else//可以连接服务器
 {
 //对比本地和服务器的配置
 CompareServerVersion();
 //开启下载
 DownLoadResByThread();
 }
 }
 public delegate void HandleFinishDownload (WWW www);
 //在多线程环境中只要我们用下面的方式实例化HashTable就可以了
 Hashtable ht = Hashtable.Synchronized(new Hashtable());
 public void DownLoadResByThread () {
 downloadThread = new Thread(new ThreadStart(DownFile));
 downloadThread.Start();
 }
 //更新本地的version配置
 private void UpdateLocalVersionFile () {
 XmlDocument xmldoc = new XmlDocument();
 XmlElement xmlelem;
 //加入一个根元素
 xmlelem = xmldoc.CreateElement("" , "VersionNum" , "");
 xmldoc.AppendChild(xmlelem);
 foreach (KeyValuePair<string , ResReference> kvp in LocalResOutVersion) {
 XmlElement xe1 = xmldoc.CreateElement("File");//创建一个<Node>节点
 xe1.SetAttribute("FileName" , kvp.Key);//设置该节点FileName属性
 xe1.SetAttribute("Num" , kvp.Value.version.ToString());//设置该节点Num属性
 xe1.SetAttribute("isFinish" , kvp.Value.isFinish.ToString());//设置该节点isFinish属性
 xe1.SetAttribute("isUnZip" , kvp.Value.isUnZip.ToString());//设置该节点isUnZip属性
 xmlelem.AppendChild(xe1);//添加到<Employees>节点中
 }
 xmldoc.Save(LOCAL_RES_OUT_PATH + MAIN_VERSION_FILE);
 }
 //与服务器版本比较
 private void CompareServerVersion () {
 foreach (var version in ServerResVersion) {
 //Debug.Log(version.Key);
 string fileName = version.Key;
 int serverVersion = version.Value;
 //if (IsResOut(fileName)) {
 //如果本地配置表中无资源、版本号不匹配，或者未下载完，就下载
 if ((LocalResOutVersion.ContainsKey(fileName) ＆＆ LocalResOutVersion[fileName].version != ServerResVersion[fileName]) ||
 !LocalResOutVersion.ContainsKey(fileName) ||
 (LocalResOutVersion.ContainsKey(fileName) ＆＆
 LocalResOutVersion[fileName].version == ServerResVersion[fileName]
 ＆＆ !LocalResOutVersion[fileName].isFinish)) {
 NeedDownFiles.Add(fileName);
 }
 //AllResDic.Add(fileName , new ResReference(true , serverVersion));
 }
 totalNeedUpdateNum = NeedDownFiles.Count;
 updatedNum = 0;
 Debug.Log(string.Format("需下载资源数量：{0}" , totalNeedUpdateNum));
 //删除旧资源
 foreach (string fileName in NeedDownFiles) {
 string localPath = LOCAL_RES_OUT_PATH + fileName;//下载文件
 string localUnZipPath = string.Format("{0}{1}.{2}" , LOCAL_DECOMPRESS_RES , fileName.Substring(0 , fileName.IndexOf(".")) , "assetbundle");//解压文件
 if (File.Exists(localPath))
 File.Delete(localPath);
 if (File.Exists(localUnZipPath))
 File.Delete(localUnZipPath);
 }
 }
 /// <summary>
 /// 检查包外资源是否比包内资源新
 /// <summary>
 /// 将xml版本号转换为字典数据
 /// </summary>
 /// <param name="content"></param>
 /// <param name="dict"></param>
 private void ParseVersionFile (string content , Dictionary<string , int> dict) {
 if (content == null || content.Length == 0) {
 return;
 }
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(content);
 XmlNodeList nodes = doc.GetElementsByTagName("File");
 for (int i = 0 ; i < nodes.Count ; i++) {
 XmlAttribute att = nodes[i].Attributes["FileName"];
 if (!dict.ContainsKey(att.Value)) {
 dict.Add(att.Value , int.Parse(nodes[i].Attributes["Num"].Value));
 } else {
 Debug.Log("Dict has same key ----->" + att.Value);
 }
 }
 }
 /// <summary>
 /// 将xml版本号转换为字典数据
 /// </summary>
 /// <param name="filename"></param>
 /// <param name="dict"></param>
 private void ParseLocalVersionFile (string filename , Dictionary<string , ResReference> dict) {
 if (filename == null || filename.Length == 0) {
 return;
 }
 XmlDocument doc = new XmlDocument();
 doc.Load(filename);
 XmlNodeList nodes = doc.GetElementsByTagName("File");
 for (int i = 0 ; i < nodes.Count ; i++) {
 XmlAttribute att = nodes[i].Attributes["FileName"];
 if (!dict.ContainsKey(att.Value)) {
 dict.Add(att.Value , new
ResReference(bool.Parse(nodes[i].Attributes["isFinish"].Value) ,
int.Parse(nodes[i].Attributes["Num"].Value) ,
bool.Parse(nodes[i].Attributes["isUnZip"].Value)));
 } else {
 Debug.Log("Dict has same key ----->" + att.Value);
 }
 }
 }
 //支持断点续传的下载
 private void DownFile () {
 if (updatedNum >= NeedDownFiles.Count) {
 UpdateLocalVersionFile();
 return;
 }
 string fileName = NeedDownFiles[updatedNum];
 string serverPath = SERVER_RES_URL + fileName;
 //判断目录
 string[] fileNameArr = fileName.Split('/');
 string filePath = "";
 for (int i = 0 ; i < fileNameArr.Length - 1 ; i++) {
 filePath += fileNameArr[i] + "/";
 }
 filePath = LOCAL_RES_OUT_PATH + filePath;//下载文件目录
 string localPath = LOCAL_RES_OUT_PATH + fileName;//下载文件
 string localUnZipPath = string.Format("{0}{1}.{2}" , LOCAL_DECOMPRESS_RES , fileName.Substring(0 , fileName.IndexOf(".")) , "assetbundle");//解压文件
 if (!Directory.Exists(filePath))
 Directory.CreateDirectory(filePath);
 if (!Directory.Exists(LOCAL_DECOMPRESS_RES))
 Directory.CreateDirectory(LOCAL_DECOMPRESS_RES);
 bool isRight = false;//是否下载好
 //上个版本先删除（并删除解压好的文件）
 if(LocalResOutVersion.ContainsKey(fileName)＆＆
(LocalResOutVersion[fileName].version < ServerResVersion[fileName])) {
 File.Delete(localPath);
 File.Delete(localUnZipPath);
 }
 FileStream fs = null;
 HttpWebRequest requestGetCount = null;
 HttpWebResponse responseGetCount = null;
 try {
 requestGetCount = (System.Net.HttpWebRequest)System.Net.HttpWebRequest.Create(serverPath);
 responseGetCount = (HttpWebResponse)requestGetCount.GetResponse();
 curFileTotalNum = responseGetCount.ContentLength;
 if (File.Exists(localPath)) {
 fs = File.OpenWrite(localPath);//打开流
 curFileNum = fs.Length;//通过字节流的长度确定当前的下载位置
 if (curFileTotalNum - curFileNum <= 0) {
 isRight = true;
 }
 fs.Seek(curFileNum , SeekOrigin.Current); //移动文件流中的当前指针
 } else {
 fs = new FileStream(localPath , FileMode.CreateNew);
 curFileNum = 0;
 }
 } catch (Exception ex) {
 if (fs != null)
 fs.Close();
 UpdateLocalVersionTemp(fileName , false , false);
 UpdateLocalVersionFile();
 isRight = false;
 Debug.Log(ex.ToString());
 } finally {
 if (responseGetCount != null) {
 responseGetCount.Close();
 responseGetCount = null;
 }
 if (requestGetCount != null) {
 requestGetCount.Abort();
 requestGetCount = null;
 }
 }
 HttpWebRequest request = null;
 HttpWebResponse response = null;
 Stream ns = null;
 string test = "";
 try {
 //本地未下载完成
 if (!isRight) {
 request = (HttpWebRequest)HttpWebRequest.Create(serverPath);
 if (curFileNum > 0)
 request.AddRange((int)curFileNum); //设置Range值
 response = (HttpWebResponse)request.GetResponse();
 //向服务器请求，获得服务器回应数据流
 ns = response.GetResponseStream();
 byte[] nbytes = new byte[1024];
 int nReadSize = 0;
 nReadSize = ns.Read(nbytes , 0 , 1024);
 while (nReadSize > 0) {
 fs.Write(nbytes , 0 , nReadSize);
 nReadSize = ns.Read(nbytes , 0 , 1024);
 curFileNum += nReadSize;
 //Debug.Log(DownloadByte);
 }
 isRight = true;
 fs.Flush();
 fs.Close();
 ns.Close();
 request.Abort();
 }
 UpdateLocalVersionTemp(fileName , true , false);
 //解压(防止更新下载不全，解压报错的文件占坑)
 if (File.Exists(localUnZipPath)) {
 File.Delete(localUnZipPath);
 }
 CompressUtil.DeCompress(localPath , localUnZipPath , null);
 UpdateLocalVersionTemp(fileName , true , true);
 updatedNum++;
 Debug.Log("down " + updatedNum + "/" + totalNeedUpdateNum + "," + fileName + "Loading complete");
 } catch (Exception ex) {
 if (fs != null)
 fs.Close();
 UpdateLocalVersionTemp(fileName , false , false);
 isRight = false;
 Debug.Log(ex.ToString());
 //解压出错，删除下载文件
 if (File.Exists(localPath)) {
 File.Delete(localPath);
 }
 //StartDownLoad();
 } finally {
 if (ns != null) {
 ns.Close();
 ns = null;
 }
 if (response != null) {
 response.Close();
 response = null;
 }
 if (request != null) {
 request.Abort();
 request = null;
 }
 //下载下一个
 //if (isRight) {
 DownFile();
 }
 }
 //下载结束
 isDownload = false;
 }
 private string UrlNoCache (string url) {
 return url + "?date=" + DateTime.Now.Ticks;
 }
 private void UpdateLocalVersionTemp (string fileName , bool isFinish , bool isUnZip)
 {
 //下载更新版本号
 if (LocalResOutVersion.ContainsKey(fileName)) {
 LocalResOutVersion[fileName] = new ResReference(isFinish , ServerResVersion[fileName] , isUnZip);
 } else {
 LocalResOutVersion.Add(fileName,newResReference(isFinish , ServerResVersion[fileName] , isUnZip));
 }
 UpdateLocalVersionFile();
 }
 }

 下面介绍一下代码，在该代码中首先声明两个变量，用于存储包体外的资源和服务器资源，包体外的资源主要是考虑到从服务器下载的资源不可能加载到包体里面，只能放到指定的文件夹下面，声明的变量是用字典Dictionary存放的。

public static Dictionary<string , ResReference> LocalResOutVersion = new Dictionary<string , ResReference>();//本地保外资源
 static Dictionary<string , int> ServerResVersion = new Dictionary<string , int>();//服务器资源版本号

 在声明的变量中有ResReference，它表示的是资源信息，在这里用结构体定义本地资源包信息，结构体表示如下。

 //本地资源包信息
 public struct ResReference {
 public bool isFinish;//是否存在包外
 public bool isUnZip;//是否解压DownFile
 public int version;
 public ResReference (bool isFinish , int version , bool isUnZip) {
 this.isFinish = isFinish;
 this.version = version;
 this.isUnZip = isUnZip;
 }
 }

 前期准备工作完成后，开始进入资源下载阶段，使用函数StartDownLoad开始启动资源下载。首先下载配置文件，本地的配置文件会与服务器的配置文件做对比决定下载哪个资源文件，在该函数中调用了函数LoadVersion，处理版本配置文件。

IEnumerator LoadVersion () {
 isDownload = true;
 //清空变量
 //LocalResOutVersion.Clear();
 ServerResVersion.Clear();
 NeedDownFiles.Clear();
 string serverMainVersion = "";
 //读取本地配置文件
 string localVersion = System.IO.Path.Combine(LOCAL_RES_OUT_PATH , MAIN_VERSION_FILE);
 if (File.Exists(localVersion))
 Instance.ParseLocalVersionFile(localVersion , LocalResOutVersion);
 //取得服务器版本
 string versionUrl = SERVER_RES_URL + "VersionNum/" + MAIN_VERSION_FILE;
 WWW sw = new WWW(versionUrl);
 yield return sw;
 if (!string.IsNullOrEmpty(sw.error))
 Debug.LogError("Server Version ..." + sw.error);
 else {
 serverMainVersion = sw.text;
 Debug.Log(serverMainVersion);
 //serverVersionByte = sw.bytes;
 ParseVersionFile(serverMainVersion , ServerResVersion);
 }
 if (string.IsNullOrEmpty(sw.text)) {
 Debug.LogError("无法连接服务器");
 //CompareLoacalVersion();
 //加载下一个场景
 } else//可以连接服务器
 {
 //对比本地和服务器的配置
 CompareServerVersion();
 //开启下载
 //CoroutineManager.DoCoroutine(DownLoadResByWWW());
 DownLoadResByThread();
 }
 }

 配置文件对比完成后，确定开始启动线程下载资源，调用函数DownLoadResByThread下载，代码如下所示。

 public void DownLoadResByThread () {
 downloadThread = new Thread(new ThreadStart(DownFile));
 downloadThread.Start();
 }

 该函数起动了一个线程，在这个线程里面调用函数DownFile去下载资源并且它具有断点续传功能，函数中都有注释，读者可以自行查看。下面把断点续传内容的重点解释一下：它的HttpWebRequest和HttpWebResponse 作为资源请求来使用，获取到服务器请求后，可以拿到资源流，根据流的大小判断是否下载完整，如果不完整可以做个记录，继续下载，在最后又调用了一次函数DownFile()，函数迭代进行直到资源下载完成，以下是处理断点续传的代码。

HttpWebRequest request = null;
 HttpWebResponse response = null;
 Stream ns = null;
 string test = "";
 try {
 //本地未下载完成
 if (!isRight) {
 request = (HttpWebRequest)HttpWebRequest.Create(serverPath);
 if (curFileNum > 0)
 request.AddRange((int)curFileNum);
 //设置Range值
 response = (HttpWebResponse)request.GetResponse();
 //向服务器请求，获得服务器回应数据流
 ns = response.GetResponseStream();
 byte[] nbytes = new byte[1024];
 int nReadSize = 0;
 nReadSize = ns.Read(nbytes , 0 , 1024);
 while (nReadSize > 0) {
 fs.Write(nbytes , 0 , nReadSize);
 nReadSize = ns.Read(nbytes , 0 , 1024);
 curFileNum += nReadSize;
 //Debug.Log(DownloadByte);
 }
 isRight = true;
 fs.Flush();
 fs.Close();
 ns.Close();
 request.Abort();
 }
 UpdateLocalVersionTemp(fileName , true , false);
 //解压（防止更新下载不全，解压报错的文件占坑）
 if (File.Exists(localUnZipPath)) {
 File.Delete(localUnZipPath);
 }
 CompressUtil.DeCompress(localPath , localUnZipPath , null);
 UpdateLocalVersionTemp(fileName , true , true);
 updatedNum++;
 Debug.Log("down " + updatedNum + "/" + totalNeedUpdateNum + "," + fileName + "Loading complete");
 } catch (Exception ex) {
 if (fs != null)
 fs.Close();
 UpdateLocalVersionTemp(fileName , false , false);
 isRight = false;
 Debug.Log(ex.ToString());
 //解压出错，删除下载文件
 if (File.Exists(localPath)) {
 File.Delete(localPath);
 }
 //StartDownLoad();
 } finally {
 if (ns != null) {
 ns.Close();
 ns = null;
 }
 if (response != null) {
 response.Close();
 response = null;
 }
 if (request != null) {
 request.Abort();
 request = null;
 }
 DownFile();
}

 该代码脚本可以直接挂到对象上，完成资源的断点续传，断点续传主要是用于减小包体的，可以在玩家玩游戏的过程中，在后台开启一个线程来完成后续资源的下载。采用了断点续传技术也可以避免在下载的过程中由于网络不好，出现资源下载不完整的情况，在玩家不知情的情况下就完成了游戏资源的下载。

 14.6　小结

 在游戏开发中，从用户体验角度来说，游戏包体的大小，游戏运行是否卡顿，游戏计费是否合理，这是三个最重要的因素，它们直接决定了上线游戏产品的生死。游戏产品上线除了玩法外，要围绕这三个问题去努力，解决游戏包体大小，可以使用本章提出的多线程断点续传功能，将游戏的大部分资源放到资源服务器上。游戏运行卡顿涉及游戏优化问题，对于优化，除了对动态对象优化外，还可以使用对象池的原理，对将要用到的对象进行预加载处理。游戏计费是否合理取决于游戏的类型，但请记住一条，对于玩家的充值一定要在游戏中将其消耗掉。

OEBPS/Images/00094.jpeg

OEBPS/Images/00144.jpeg
ik #ﬁ OpenGL iDirect # ar |

T RAL G2 TR

OEBPS/Images/00117.jpeg
BaseWindow

L2

HeroWindow LoginWindow RoomWindow

BT RS TR P33) 8

OEBPS/Images/00076.jpeg
o

OEBPS/Images/00031.jpeg
1
[x',y',z',l] =[x,y,z,1]* :)

0

0
cosd
—sin@
0

0
sin@
cos@

0

—_ O O

OEBPS/Images/00145.jpeg

OEBPS/Images/00100.jpeg

OEBPS/Images/00143.jpeg

OEBPS/Images/00122.jpeg

OEBPS/Images/00091.jpeg

OEBPS/Images/00161.jpeg
o U

Time of Bulld

Report generation took:

Total Build Size:
45.4MB

Toxtures
6%

Top ten largest in build:

Made for

Builtin:

Top ten largest not in build:
»

OEBPS/Images/00040.jpeg

OEBPS/Images/00088.jpeg

OEBPS/Images/00018.jpeg
¢y =a,b, —a.b,
c,=a:b,—a.b.

c.=ab,—a,b,

OEBPS/Images/00027.jpeg

OEBPS/Images/00090.jpeg

OEBPS/Images/00004.jpeg

OEBPS/Images/00011.jpeg

OEBPS/Images/00137.jpeg
[import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

'AnimationBlendMode’
'AnimationClip'
'AnimationState’
'Animation’
'Application’
'AssetBundle’
'Asyncoperation’

'AudioSource’

'Behaviour'

'BIEFramework AppConst'
'BIEFramework ByteBuffer'
Framework LuaBehaviour'
: LuaHelper'
'BIEFramework Manager MusicManager'
'BIEFramework Manager PanelManager'
'BIEFramework Manager ResourceManager'
Framework Manager TimerManager'
Ut
'BlendWeights'

'BIEFramewor:

'BIEFramewor:

'BoxCollider"
'CameraClearFlags’
*Camera’

'CharacterController’

cover.jpeg
.........................

OEBPS/Images/00140.jpeg
T
L]

B TR

fr—
e

TR B

Luagister

LuaiZ4it

OEBPS/Images/00015.jpeg

OEBPS/Images/00061.jpeg
sold: 0
=nemy Health: 100%
Gost Unt
ok
St Camors

OEBPS/Images/00107.jpeg

OEBPS/Images/00098.jpeg

OEBPS/Images/00139.jpeg
Wl WrapFile:
» @8 Examples
¥m Source
> ase
¥ LuaWrap
8 ArimationBlenchiadevrap
B Animavoncipwrap
I Animationstatewrap
B AnimationWrap
B Appiicationwrap
[
B Asyncoperationwrap
B AudioClpvican
B AudioSaurcewrap
I Behaviourtirap
B BiEFramenork_AppConstirap
B oiEramencrk_byteBufferirap
B BicFramenork_LuabehaviourWrap
R SicFramensrt_Lustiolpertiran
 BEFromenork_Manager_MusicHanagerirap
B o1cFramenork_Manager_Panelianageriirap
B BIEFramenork_Manager_ResabrceMianagerirap
 O1EFramenork_Manager_Timertianager¥irap
B BicFramenork_Utilwrap
B slendweightstirap
B EoxColiderwrep
1 CameraCiearriagsiran
B Comerawrap
B CharacterControllervirap
@ Coliderwrap
Componentiirep
B Oebuggeriirap
B Delegateractorywrap
B Delegatevirap
B Enumiiran
B Gameobjectvran
@ tenumeratorviap
B putvirap
B KeyCodewrap
B Lightrypevirap
B Lot
B vaterialwrap
B MeshColldervirap
B MeshRendei e Wiap
B Monceehaviourvirap
B obiectwran
R FarticleAnmatariirap
I ParticleEmittervitap

OEBPS/Images/00099.jpeg

OEBPS/Images/00039.jpeg
ierarchy | =
Create ~ SrAll

Directional light
Main Camera
I ELE]
B UI Root
¥ FemaleAvatar
coat-001
coat-003
P Female_Bip01
foot-001
foot-003
hair-001
hair-003
hand-001
hand-003
head-001
head-003
pant-001
pant-003

OEBPS/Images/00063.jpeg
Behavior s

Sovwane TTRN Vaiabien o

4r e

Harvester -

* Composites

Salecir

* Decorators
Condtons Evarar

et Svccess

ik
Uri Pl
il Soceens
YRTS
Gt Saseare caied
* Actiahs
B Trve Refrence
VetsarTe Giasimen
* Basic
* Common
*CIF
» Final 1K
* Reflection
S vion
Satormpaty v
Tk el
RIS

* Conditionals
Wandem Bakanity
» Basic
» Common
»CTF
» Reflection

OEBPS/Images/00112.jpeg
Sl St il —
AN g 9 own e
Tag TR Layer TR
Anirytors e, G T
e 8w Antions o s
el v Transtorm o
Checkvasdshaders Foutlos X QAN ¥ SR .01
Copyhoodsox Rouson X0 YO Z0
R CopyTranstorm Sak XLooYLoo23¥
deacivatesenderers ¥ B ¥ Ocean cripo wo.
EdtorObExporer
OceanGenerstornspector
I Fostprocessbuidhiayer Targe Payer
ReflectonThreshholdTwsaker Follow P o
RenderCubemaowasrd Ocean material
ReveattesnColiders @ Ocean eria o
B SiysoxGenerator Ocean shader

TranstomGrous Bl Ocesn o
Explosions
e Chunks count
» 80 Gamos a %
» il Chunksize
Objects X150 v 2130
o 0cean Chunk poly count

@ in
wath 32 Heghe 32
o ocoan Sources ! B

(i

Ocean generator

Saale

- 3
Boyancy Chopey scale
ume - 6
= Waves speed
@A P 02
- s

Rendecreicton @

18

OEBPS/Images/00024.jpeg
0 00

1

0100
0010

[3m20]*

[x',y',z',l]

1

z

I T,

OEBPS/Images/00146.jpeg
e
mmmw.u__

i

nan:aa.

ummmn,

OEBPS/Images/00043.jpeg
© inspector &=

¥ Main Camera Mistatic
Tag MainCamera % Layer Befaule
v /) Transform LA
fF] X -0.06186885 Y 0.8646038 Z 3.150972
f@xo Y -180 zo
@ x1 Y @ z %
¥ % ¥ camera LA
Clear Flags (Bepth only o
Culling Mask (Befatie =
Projection (Perspectve Ol
Field of View o. 60
Clipping Planes Near 0.3
Far 1000
Viewport Rect X0)
wi Hi
Depth 1
Rendering Path (UsePhyer Sewtngs. cul
Target Texture None (Render Texture))
Ocelusion Culling v
HDR m
v @ ¥ GuILayer m %
v o ¥ Flare Layer LK
o T .

@ ¥ Avatar Sys (Script)

Script B AvatarSys

Add Component

OEBPS/Images/00166.jpeg
Teansform e,
1B ¥ Combine draw call (scrip) mo.
» B CombineDra
RV skinned tesh Renderer me
. v
tight a v
Gameobiect g

Assault_body (Instance) >

OEBPS/Images/00059.jpeg
) © gt .
9 Onatasder mstaic
Ouatsater Taq TR 9 Layer ORI .
) transtorm wo.
B SnData Laader (script) o,
msomscaster 3
arfousion e :
Contguraton Web B
scacation Bvaitons o

OEBPS/Images/00151.jpeg

OEBPS/Images/00044.jpeg
&= Project
Create ~ @
» 85 Mirror Shaders
v 85 Models
¥ 85 Characters

» 85 Materials
» @ Female
» @ nobody@o1

Resources
» @ FemaleAvatar

v @ targetmodel
® Female_Bip01

a8

OEBPS/Images/00080.jpeg

OEBPS/Images/00038.jpeg
0 0 1
R=| sin(y+a) cos(y+a) 0
—cos(y+a) sin(y+a) 0O

OEBPS/Images/00057.jpeg
VB AWNet
> 85 AiwanNet
» 85 AiWanNet.Bitswarm
» 8 AiwanNet.Controllers
» 85 AiWanNet.Core
» 8 AiwanNet.Core.Sockets
» 85 AiWanNet.Entities .Data
» 85 AiwWanNet.Exceptions
» 85 AiWanNet.FSM
» 85 AiWanNet.Logging
i AlWanNet Protobuf.Serialization

[@ begingame.proto
[@ booth proto
[common.proto

@ forwardmsg.proto
@ login.proto

@ mail.proto
. map.proto

»Es AlWanNet Requests
> 85 AiWanNet.Util
» 85 ComponentAce.Compression.Libs.zlib

OEBPS/Images/00045.jpeg

OEBPS/Images/00081.jpeg

OEBPS/Images/00114.jpeg

OEBPS/Images/00165.jpeg

OEBPS/Images/00101.jpeg

OEBPS/Images/00123.jpeg

OEBPS/Images/00119.jpeg

OEBPS/Images/00110.jpeg

OEBPS/Images/00141.jpeg
T PRt —

FERGINAESE SSEXEWLRREN. WA

OEBPS/Images/00085.jpeg
Ehractons bght.

e
MatowClone
MstowClone
MitouClone)
MsttowClone)

vocein
DecpperOfscreencam

OEBPS/Images/00168.jpeg
Fk,
iy

ik P

UM P

ER T

OEBPS/Images/00096.jpeg

OEBPS/Images/00069.jpeg

OEBPS/Images/00104.jpeg
© Inspector

v @ ¥ Ocean (Script) LR
Ocean generator

Target/Player
Follow 1 Player o
Ocean material
#0cean Material o
Ocean shader
8 Mobile/Ocean o

Chunks count
) 2
Chunk size
X 150 Y1 z 150
Chunk poly count
width 32 Height 32

Scale
®. 3

Choppy scale

L 6
Waves speed
L} 07

Wake distance

.. 5
Render reflection v
Render textures size
Width 128 Height 128
Render layers W@
Sun transform
» Directional light)
Sun direction

X0 Yo zo

Water type [TSIRREE

OEBPS/Images/00012.jpeg

OEBPS/Images/00129.jpeg

OEBPS/Images/00009.jpeg

OEBPS/Images/00037.jpeg
1 0 0 0 0 1) cosy —siny 0
R= |0 cosa -sina| 0 1 Ofsiny cosy 0
0 sina cosa JI-1 0 0){ O 0 1

OEBPS/Images/00097.jpeg
= Project
Create -

» 8 Edicor
» @8 model
V88 Ocean
¥ 85 Ocean Sources
[Algorithm
Bleox
®eox
[@ Boyancy
Bump
Foam
BlroamDarkWaters
[FPscounter
[MistController
Ocean
@ ocean
® Ocean Material
— oceangradient
[@ RotateCameraControl
Spit
® spit
T water
[wind
» @ Prefabs
85 Plugins
s T
B Complex
[complexarray
ComplexF
[ComplexMath
[complexstas
& Fourier
[@ FourierDirect
[Cameratelper
B destroyThisTimed
>89 Standard Assets
% Tasharen
5 UnitySteer-master
2 Main

n

© inspector -

@D Ocean Material LEN
Shader TMebTe/Geasn ¥
SurfaceColor
WaterColor
Refraction (RGB)

Tiling Offset
1 o
. o
Reflection (RGE)
Tiling Offzet
« 1 o
o1 o
Fresnel (A)
Tiling Offset
x4 o
y 1 o
Bump (RGE)
Tiling Offset
« 1 o
v o
Foam (RGB)
Tiling. Offset
w1 o
vt o
size
3% 78I Y z128 wo
SunDir

X 009312 Y -0.3632 Z 0,9270% W0
SurfaceColor LOD1
WaterColor LOD1

Water LODL (RG8)

Tiling offset
1 o
w1 o

OEBPS/Images/00147.jpeg

OEBPS/Images/00135.jpeg
Vi ulua
8 Core
» B Docs
v Edicor

Packager
rapFile
g
» B source
BREADME
» B Unityus

OEBPS/Images/00155.jpeg

OEBPS/Images/00017.jpeg

OEBPS/Images/00068.jpeg

OEBPS/Images/00128.jpeg
© fnspector
¥ Feilong 5
Tag [FTs7er 71 Layer [ERES B
J Transform L
P X 0 Yo zo
x0 Yo zo
/® x 18 Y 18 z 18
© ¥ Animation L
Animation e o
Animations
Size 8
Element 0 Balk 3
Element 1 Firee o
Element 2 wskilz o
Element 3 Fattack o
Element 4 kil °
- ¥ death o
Element 6 attackz o
Element 7 widie o
Play Automatically v
Animate Physics m
Culling Type. (Based On Renderars %
8 ¥ capsule Collider W
7 Edit Colider
Is Trigger L
Waterial Wone (Physic Material) o
Center X0 Y185 zo
Radius 15
Height 2
Direction VR
Add Component

OEBPS/Images/00050.jpeg
e s e

o
@ Famwen

@ P ot

s

i

e

Oinzaais

ER e s
L T
Trdnitecs .
s v B
& s we.
oy
Hima o
cuair By
b Wi o
Foations ene st a
SRy
Cratn TSN
@ Lo wo.
s WY = e

OEBPS/Images/00148.jpeg
T n A (e

ULt 5 B R A

B

ARE 20

e

i1

OEBPS/Images/00025.jpeg
TE S E SYCHE P

#scene € Gam

<persp

OEBPS/Images/00016.jpeg

OEBPS/Images/00035.jpeg
cos @ 0 sin@ 0
[x',y',z',l]:[x,y,z,l]*_Sing cos@ 0 0
0 0 1 0
0 0 0 1

OEBPS/Images/00019.jpeg

OEBPS/Images/00007.jpeg

OEBPS/Images/00008.jpeg
Vi \‘

V2

OEBPS/Images/00075.jpeg

OEBPS/Images/00083.jpeg

OEBPS/Images/00134.jpeg
v ulua
» 88 Core

5 Docs

5 Editor

5 Examples

9 Source

?’README

» 8 UnityVs

OEBPS/Images/00111.jpeg

OEBPS/Images/00060.jpeg

OEBPS/Images/00047.jpeg

OEBPS/Images/00106.jpeg

OEBPS/Images/00013.jpeg

OEBPS/Images/00030.jpeg

OEBPS/Images/00002.jpeg

OEBPS/Images/00156.jpeg
[

OEBPS/Images/00053.jpeg
&%

& common.xstt

ceharpacit

) deseriptor.proto

] ticenceste

{4 protobuf-netl

(& protobufnet Extensions.dil
& protobuf-net Extensions.pdb.
protobuf-net Extensions XML
& protobuf-netpdb

(2] protobuf-netxml

3 protocere

L protociicensext

¥ protogenexe

@) protogenpdb

& vbxlt

& sombxslt

#2EW

2013/5/7 2105
2013/5/7 21:05
2013/5/7 2106
2013/5/7 21:05.
2013/5/7 21:06
2013/5/7 205
2013/5/7 206
2013/5/7 206
2013/5/7 21:05
20137577 2105
20037577 2106
2013/577 21:05
2013/5/7 21:05
2013/5/7 2105
2013/5/7 21:05
2013/5/7 2106

£

XSLT Styleshaet
XSLT Stylosheet
PROTO 28
oz
SREsrE
AEESR

Program Debug..

BaiduBrowser H.
Program Debug..
BaiduBrowser H.
wEEs
s
R

Pregram Debug...

XSLT Stylesheet
XSLT Stylesheet

6x8
nKE
158
1K8
17K8
148
zxe
5K8
axxs
7k
15738
2x8
17438
82K
42K8
1K8

OEBPS/Images/00042.jpeg
Ehijedt
» 88 birror Shaders
88 podels
788 Characters
» 82 vateriols
» @ Femele
» Qincbedyaor
» U1
Resources
» @ Femaieavatar
¥ targetmodel
@ Female 8501
» 8 shaders
» 88 Textures
-8 EnR
B
< avatar
B Avetar_an
B avetarsys
®has
B Fadern
® 500
Ground
®ivcn
®isen
B iew Animator Cortcller
B snspvertices

s

© tuspector .
. targetmodsi state -
Tag (Oresesed) Loyer (WG v
Transform o

70 ¥ Animation
Animation
¥ animations
Size
Element 0
Play Automaticaly
Animate Physics
culing Type R

Aad Cempanee

OEBPS/Images/00072.jpeg

OEBPS/Images/00142.jpeg

OEBPS/Images/00149.jpeg

OEBPS/Images/00133.jpeg
Component Lua [Game] Window Help

Center | ileeal iPhone Resource
B consale Build Android Resour
Pause Build Windows Resource

Build Protobuf-lua-gen File

OEBPS/Images/00066.jpeg
¥ Physics
Has Entered Collision
Has Entered Collision 2 D
Has Entered Trigger
Has Entered Trigger 2 D
Has Exited Collision
Has Exited Callision 2 D
Has Exited Trigger
Has Exited Trigger 2 D

¥ Race
Can lNpe Fire

OEBPS/Images/00116.jpeg
Controller

il A

View

P

Model
AL

Ko

OEBPS/Images/00153.jpeg

OEBPS/Images/00041.jpeg
= Hierarchy | =
Create ~ CwAll

Directional light
Main Camera
' GHELT

coat-003
» Female_Bip01
foot-001
foot-003
hair-001
hair-003
hand-001
hand-003
head-001
head-003
pant-001

¥ Female_Bip01 Pelvis
P Female_Bip01 Spine

OEBPS/Images/00132.jpeg

OEBPS/Images/00073.jpeg

OEBPS/Images/00074.jpeg

OEBPS/Images/00158.jpeg
EES; CAWindows\eystem32\cmd.exe
iorosoft Uindows O

adb
6.1.7681)
HUHTA <> 2009 Microsoft Corporation. FEFTEA .

\sers\Mdninistrator>adh logeat —s Unity

dacnon not running. starting it now on port 5837 x
- dacnon started succossrully *

error: device not Found

- aiting for device

OEBPS/Images/00026.jpeg

OEBPS/Images/00065.jpeg
Behavior Desig

Behavior Tasks Variables Inspector 4 p
Name Random Probability W O % N <
Instant 4 P
Comment
50% 8t
Q' Success Probability 0.5 ‘o
Q' seed 0 o

0

Q use Seed

OEBPS/Images/00077.jpeg
\ ¥ arc_Soldier@Run
P Controller_Character
Mesh_Orc_Soldier
¥ Shadow
Camera
Flane

OEBPS/Images/00152.jpeg
hero01_body_d_choice
Shader

WRSTzGame/ReTeave/Spaeulariim

Main Color
Specular Color
Shininess

Reflection Calor

Base (RGB) Gloss (A)

Tiling offset
x 1 o
o o
Reflection Cubemap.
Tiling offset
x 1 o
o o
Normalmap
Tiling offset
x 1 o
o o
Alpha cutoff
Rim Color
Rim Power

&dd Component

OEBPS/Images/00058.jpeg
FRFPUT iR

p<is

AL

&P

[
3
&

& FUEAT IR

VAT A

FIPARIAE

OEBPS/Images/00034.jpeg

OEBPS/Images/00095.jpeg

OEBPS/Images/00084.jpeg
50.12.

OEBPS/Images/00092.jpeg

OEBPS/Images/00115.jpeg

OEBPS/Images/00102.jpeg

OEBPS/Images/00159.jpeg
ws | s mx_ | anx azam s

oo, 198 G wecanmu ERRREES

Comtepeticnpt SRacviOiN. 108 MR lowwm;es bwems

60T - .

OEBPS/Images/00164.jpeg

OEBPS/Images/00032.jpeg

OEBPS/Images/00130.jpeg
message. assetbundle [243365d67304cd745e35768eaal d2d06

message. assetbundle. mati fest [b3BeTecbh389ad6d99£3d1ad092859c
prompt. assetbundle |ebd7ads1e0bb94c2923cddfa0a8b02c8

prompt. assetbundle. nani fest | 2£01dFFd9257203a31 43bTa86cF4d010
prompt_asset. assetbundle |87£79b0757aeh356£5ddc81b 7352601
prompt_asset. assetbundle. mani fest |765af04c965692670bdeBbcdcfeab0
shared_asset, assetbundle | 40675b1587£76a07519423¢5940edTbe
shared_asset. assetbundle. mani fest |c13:82873224965859c7152049b6243
StreamingAssets|19a387300161114cbd396d94bded5435
Streamisghssets. mani fest |bb0cfda2eb95d30£37dc06dad] 6£61d6
lua/Common/define. lua|sced38£5cb917448821939ddbaTbbeda
lua/Common/functions, 11a|edb350ac67280dc16155929Fb1516de
lua/Common/protocal. lua [be8bdd0£623340c9a0cad791799db91b
lua/Controller /MessageCtrl. lua|d3a2109dfb0d29667c5£705ddBaeT £76
lua/Cantroller /PromptCtrl. lua|aéel eeed3dcad3alle2fabl fece5eds
lua/Logic/Ctrllianager. lua| 265063£03££165febacebbbSETT62£e0
lua/Logi c/Ganellanager. lua|839155bbed1 09733325b45ce3cd1bd27
lua/Logic/LuaClass. lua|62a6e04a5983bbBc93d46327a5726089

Tna/lngi c/Metwnrk. 10a | 256 F76640F6647a1591 24434dFAR%de
lua/Systen/Bounds. 1ua| =5cc349578e3a2ffa7agcb3ddd1 Telet
Lua/Systen/Build. bat [42679469918b37508b 71 2b5£4d8511c5
lua/Systen/class. lua|552d23893£96d1 26542655806 3d£0b
lua/Systen/Color. lua|d591b8daa26cdfdoe11253bel f5e5145
lua/Systen/Coroutine. 11a| 9ac00b0273dcd4£70569ab2e5250151e
lua/Systen/Event. lua| d496aef1c495F1 dbalbFFb3074d5db39
lua/Systen/Global. lua|3b3c0aac0T £3d52h £4e885350284855
lua/Systen/Layer. lua| 72c8628628ed8340943e £F5£300a0cc
lua/Systen/List. lua|c35c7al51c0c86£7231c4982eTF84bTE
lua/Systen/Nain. lua|432b8288e214cb9£31 9d1 c36d01acaBf
lua/Systen/ath. lua| fdl a0a7£ded511da5d2ab306£d6654a
lua/Systen/Plane. lua|a>f2a2£d08£fe2fddeddd2aB90020ed
lua/Systen/Quaterni on. lua| 358d649a6aa53b508e5252babdf 38a2b
lua/Systen/Ray. lua|17c262db1 36d610deaf0a3185b60757b
lua/Systen/Raycast. lua|86a0d01£c££7090978018b17321 Tddb
lua/Systen/readne. txt |58821 ecTebcl 5593407 £826£d59199a9
lua/Systen/Set. lua|e8a3ee6cd95b22£3a8662580dbd12080
lua/Systen/strict. lua| 71 £ef4845£803e9a5374£2Ec39Thdl4T

OEBPS/Images/00046.jpeg

OEBPS/Images/00078.jpeg
R Y st s et
& Ascansaer

e a——
RS

OEBPS/Images/00064.jpeg
NpcAttackAI -

OEBPS/Images/00086.jpeg
FKSEHL

s

KA

$§KLOD

N

kPR

il

HARER

OEBPS/Images/00051.jpeg

OEBPS/Images/00062.jpeg
>0ld: 90
emy Health: 100%

et Unt

ik
Swih Cameas

OEBPS/Images/00055.jpeg
Vsing common;

namespace clentmsg

(
olobal-System Sersizabie lobal: ProtoBuf roteContrsciName:

public partal class <2 login global-ProtoBufiExtansicle
¢
publc 25 logind 1

privatesting name =
Iglobal-Protadutprotonvermber(L, sRaquired = fls, Name:
Iglobal-Syater Componentiiodel Deauta el

publc string name.

0

get(retum _name;)

set{_name - value: |

)

private sting_pwd =
[global:Protadu protolembr(2, Required = flse, Name:
globat-System ComponenthodelDefauitlue(")]

public string pwd

0

2 Jogin)

names, DataFormat = global:ProtoBuf OataForma: Defaut]

P, DataFormat = global:ProtoBut DataFormat Oefaul)]

OEBPS/Images/00105.jpeg

OEBPS/Images/00036.jpeg

OEBPS/Images/00087.jpeg

OEBPS/Images/00121.jpeg
® ulGameLobby
1GameLogin
® UIGameServer
® UIMainWindow
® UlRegister

® Ulviewer

® UpdatePatch

» ® WaitingInterface

OEBPS/Images/00023.jpeg

OEBPS/Images/00003.jpeg
(1,1)

(0,0)

OEBPS/Images/00054.jpeg
B

] begingame.proto
@) begingame.proto.cs
] commonproto

@ commongrotocs

2 make-protobuf.bat

BHEB

2014/11/5 1449
2016/3/26 1037
2014/11/5 1449
2016/3/26 10:28
2014/9/13 1441
2016/3/26 10:34
2016/3/26 10:28

1 EXN
PROTO i 3Ke
Visual G Soure... 28K8
PROTO 2 198
Visuol C# Sourc.. 132K8
PROTO 2% axe
Visual G Soure ke

Windows HAE... 1x8

OEBPS/Images/00154.jpeg

OEBPS/Images/00136.jpeg
GameObject _Component ([ua] Game Window Help

en Lua Wrap Files
Clear Luainder File + Wrap Files

Encode Luafile with UTF-8
Gen u3d Wrap Files(57)

OEBPS/Images/00021.jpeg
bR

LR

OEBPS/Images/00108.jpeg

OEBPS/Images/00071.jpeg

OEBPS/Images/00010.jpeg

OEBPS/Images/00127.jpeg
<n32(CPRecover>4</n32(CPRecover>
<n32CollideRadious>50</n32CollideRadious>
<EmitPos>0,1300,0</EmitPos>

<HitPos>0,1300,0</HitPos>
<n32LockRadious>1</n32LockRadious>.
<n32RandomAttack>attack,attack2,attack3</n32RandomAttack >
<un32WalkSound>0</un32WalkSound>
<un32DeathSould>Jinglingnan5_Dead </un32DeathSould >
<un32Scriptl>Jinglingnan_5_line_01 Jinglingnan_5_line_02</un325
<n32Script1Rate>90050;" 90050</n325(r4p11Rale>

OEBPS/Images/00150.jpeg
© Inspector Services =

. New Material %,
Shader (Mobile/Diffuse -
Base (RGB) None
(Texture)
Tiling X & Y &

Offset X 0 Y @ Select

OEBPS/Images/00162.jpeg
e e e

OEBPS/Images/00014.jpeg
(4.8,10)

OEBPS/Images/00070.jpeg

OEBPS/Images/00022.jpeg
]

P(x’y’z)

OEBPS/Images/00103.jpeg

OEBPS/Images/00048.jpeg

OEBPS/Images/00113.jpeg
= Project a.=
as

e - @
< Main
v 88 Ocean Sources
Blieox
® Box
@ eoyancy
Bump
Mroam
Ml Foampariwaters
FPSCounter
[MistController
@ ocean
Ocean
® Ocean Material
— oceangradient
Spit
® spic
i water
@ wind
v 8 prefabs
® Box
@ Camera
@ wist
MistLow
® Ocean
» 8 PhysicMaterials
¥ 8 Plugins
B Cameratielper

1B destroyThisTimed
88 Funcartos FET

COINIC

© inspector

P Shader ' MabierOcean - ‘tm.‘\'_
SurfaceColor —-—
WaterColar — 14
Refraction (RGB) None

Tiling Offset i
0 o
i o seict
Reflection (RGE) None
i o
3 o
v E o
Fresnel (A)
o o -
v o Selct
Bump (RGB)
X1 o
v o Selct
Foam (RGE)
E a
ar o Selct
size
X150 Y1 z150 WO
Sundir

X 0.0931; ¥ -0.363% Z 0.9270. W 0
SurfaceColor LODL
WaterColor LODI
Water LODI. (RGB)

Tiling ofsetr
x1 a

y1 o el

Satact

OEBPS/Images/00125.jpeg
Mty

OEBPS/Images/00029.jpeg
O i/ o B oM bt S Moo oS Mttt e it 20 Dbt cicsin! tA bk
3-4_Birth.unity - 4-

[e¥CanEr e

Hscene

Textured . ¢ 20 TR) e

OEBPS/Images/00163.jpeg

OEBPS/Images/00049.jpeg

OEBPS/Images/00167.jpeg

OEBPS/Images/00052.jpeg

OEBPS/Images/00093.jpeg
~) Transform bl
Poston X0 YO Z0
Rototion KO Y@ o zO

sale X1 v1oz1

B ¥ 0cean (script) ma

Ocean generator

Tergetplayer

Follow 1 Naie (Tvaistarin} °
Ocean material

0cean Material °
Ocean shader

A Mobile/Ocean °

Chunks count
o 2
Chunk size
X150 v 2150
‘Chank poly count
width 32 Height 32

Seale
» 3
Choppy scale.
. C
Waves speed
S 07
Wake distance
S 5
Render reflection v
Rander texturas iz
wiath 128 Height 328

Render layer THRGET

S transform

 Nene (Transform) °
Sun diraction

X0 Yo 20
Water type TR

vister colore

¥ Wind (script) LS

o
Humidity o

Wave Scale “

Force Storm m

Prev value 01

Next Value 04

OEBPS/Images/00005.jpeg

OEBPS/Images/00056.jpeg
8% protobuf-net
» 88 Compiler
» 88 Meta
» 85 Properties
» 85 Serializers
» 8 ServiceModel
b8 Web
@ BciHelpers
@ BufferExtension
@ BufferPool
[callbackAttributes
[@ DataFormat
[Extensible
@ Extensibleutil
GlobalSuppressions
@ Helpers
@ Extensible
@ iExtension
@ implicitFields
@ KeyvaluePairProxy
@ NetObjectCache
@ prefixstyle
ProtoContractattribute
[ProtoConverterattribute
8 FrotoEnumattribute
[ProtoException
8 Protolgnoreattribute
@ Protolncludeattribute
@ ProtoMemberaAttribute
[Protoreader
8 Protowriter
[serializationContext
[Serializer
@ subltemToken

WireType
el i

OEBPS/Images/00126.jpeg
B Fsm
B EntityDeadrsm
B EntityForceMoversm
B EntityFreefsM
8 EntityFsm
B EntityldieFsm
B EntityLastingFSM
B EntityLeadingFsM
B EntityReleaseskilFsM
B EntityReliveFsM
B EntityRunFsm
B EntitySingFsM
B FsMHelper
8 Fsmstate
8 Fsvariable
B PlayeradMoversm

OEBPS/Images/00157.jpeg
Ciis
e

OEBPS/Images/00089.jpeg
© Inspectar o

¥ Box st
ag B Layer (G

) Teanstorm L
Posiion X 96863 Y 0. Z 96107
Rotation X0 Y2075 Z0
Sals X300 Y10 z10

@ Cube (Mesh Filter) o
Hesh mube o

7 Mesh Renderer o
Cast Shadone
Receive Shadons

Materisls
size B
Elernent 0 o5ox 0
Use Light Probes
B ¥ Bayancy (script) o
seipt mBoyaney o
Sink Force 3
4 Rigidbody L
Mazs 1
orsg o
AngularDrag 005
Use Gravity v
1t Kinematic

Interpalate
Calsion Detection

" Constrante
Freete posiion PX MY Pz

Freeze Rotaton TX PV M
" ® ¥ Box o L
B eoi cotider
1s Trgger "
Material Noe (Phyaic Matetia ©
Contr
X 953674381 ¥ 0 20
X 093999991 ¥ 1 2 n9ss9sen
Box "o
Shader RSB (€0
Base (R68)
i o
x o

RATComponent

OEBPS/Images/00109.jpeg
© Inspector

: . Ocean Material
Shader (MabTeroess

SurfaceColor
WaterColor
Refraction (RGB)
Tiling
it
i
Reflection (RGB)
Tiling
it
4
Fresnel (&)
Tiling
it
4
Bump (RGE)
Tiling
it
4
Foam (RGB)
Tiling
it
4
size
X1z Y1
Sunbir

z 128

Hane

(Testure)

szt
Hane
(Testure)

szt

wo

X 009312 Y -0.3632' Z 0.92701 W0

SurfaceColor LODL
WaterColor LODL
Water LOD1 (RGB)
Tiling
it
4

offzet
o
o

OEBPS/Images/00006.jpeg

OEBPS/Images/00138.jpeg
NUAY Bean
Liink Syeees colecttons Generics

g s cos Lo
B statc istcstring waptdst = oo Lstcstringh (0
BURLLC SEatc veia Bind(Lner Lo se-ing Sy = L)

47 (o = L || wapitsn Contatns(ype)) ceruen
B Adaype); Ty o
St (o) €
o ohesetorsteniotnog” Antnatondlandadees Rglater(L); bresks
e “ininnioncl s+ Anationcl s egloter L3 bre

einsticnstoteron Regieter (D) bresks
irsioiop Reglster (L reaki

it Rettindlcies hegiter(t)s
hinctperaianiets”s anyoperaticni s egiatar (L) st
it Ataciipuen

J diosourcoesp Regtstat (0
" Shavicurica. degiater(L); o7k

e et g e s

i raaeork Aanage o caranagien . BLERAE (L rests
ok o Tirer a5 SIEF sk PAAARL T oaragar o NELERL2S o0

U etk ki et () Srests
0% ey Sandieighinios Repister(Ly e
o5t oscetidiariea' Dol ideriop. Regiotar (L) oreaks
foie “CmeraCleurFiaparass ComraClout agcas RegLoten L)) brosks
Canerr egiater(L); oreary

TTrirag s Gharackercoeratieries Reghatar(L); bress
Coltioereap. egister (L) breoks

ok B T

OEBPS/Images/00118.jpeg
BaseWindow

K

RoomWindow ScoreWindow

HeroWindow LoginWindow
’ &% W L
WindowMegr

A

OEBPS/Images/00160.jpeg
Report goneraton took: Buitn:
Total Buid Sizo:
4same
Top ten largest n buid: Top . st not i bui
.
- 4

OEBPS/Images/00067.jpeg
¥ Race
Change Drive Level
Get Player Rank
Get Temp Value
Mpc Fire
Npc Wait Time
Race External Behavior Tree

Use Nitro

OEBPS/Images/00120.jpeg
LoginState

LobbyState ‘ ‘ HeroState ‘

OEBPS/Images/00033.jpeg
[x\ 28] =[x p,2,1]*

cosd 0
0 1
singd 0
0 0

—sind
0
cosd

0

OEBPS/Images/00079.jpeg

OEBPS/Images/00082.jpeg

OEBPS/Images/00124.jpeg

OEBPS/Images/00028.jpeg
S0 0 0

1
’991*
[x,5,2,1] s

#7201

S, 0 0
5,

1

000

OEBPS/Images/00020.jpeg
SeHi e

ST

B

OEBPS/Images/00131.jpeg
Ve

i

[]

Hru

L3

R

AN

